PWM型D类音频功率放大器的设计
2022-08-19

  引言

  D 类放大器是一种具有极高工作效率的开关功率放大器,被放大的信号并非为直接输入信号,而是经采样变换为脉宽变化的开关信号,使功率开关管均处于开关状态。理想状态下,功率开关管导通没有电压降,关断时没有电流流过,效率可达100%.但实际中,由于受器件限制(如开关速度、漏电流、导通电阻不为零等)和设计上的不完善,其实际效率通常可达到90% 以上,同线性放大器相比,具有较大的优势,目前已经在一些高档产品中得到应用并投放市场。本文设计的D 类音频功率放大器主要基于以下三个方面考虑:保证高保真度、提高效率和减小体积。

  1 D 类音频功放的系统设计

  本文所设计的D 类音频功率放大器的系统结构如图1 所示。该放大器结构是基于双边自然采样技术方案实现的,在任一时刻输出所包含的信息量都是单边采样方案的两倍,通过双边自然采样还可以把输出音频信号中大量的失真成分移除到人耳所能感应到的音频带宽范围之外,达到去除D 类音频功率放大器输出端低通滤波器的目的。

 

图1 D 类音频功率放大器结构

  系统采用单电源供电,脉冲信号“out1”和“out2”的高低电平分别为VDD 和GND,输入放大级由运算放大器OTA 的闭环结构实现,误差放大器则由运算放大器OTA 与电容Cs 构成。系统工作时,音频输入信号Vin 首先经过输入放大级后输出两路差分信号,再与反馈信号求和送到误差放大器中产生误差信号VE1、VE2,对三角波载波信号VT 进行调制,输出两路脉冲信号“out1”和“out2”以驱动扬声器发声。系统包含两个反馈环路,第一个由R1、Rf1 和OTA 组成,用来设置输入放大级和整个D 类音频功率放大器的增益,第二个由R2、Rf2 和后端音频信号处理电路组成,用来减小系统的THD 指数。

  在图1 中,对电容Cs 充放电的电流I1、I2 由Vout1、Vout2、Vin、R1、Rf1、R2 和Rf2 共同决定,其中电阻和电容必须具有良好的线性度和匹配性,以获得良好的闭环性能。

  开环D 类音频功率放大器的模型如图2 所示。

 

图2 开环D 类音频功率放大器模型

  此时系统输出为:

  

  开环系统的总谐波失真为:

  

  式(2)中的Vin 为放大器的输入信号,Vn 为引入的谐波失真,Hf 为传递函数。

  具有反馈环路的D 类音频功率放大器的模型如图3 所示。

图3 闭环D 类音频功率放大器模型

  此时系统的输出为:

  

  其中Hfb 为闭环模型的传递函数,G 为反馈增益。为了得到相等的放大倍数,设计传递函数为:

  

 

  则式(3)变为:

  

  闭坏系统的总谐波失真为:

  

  比较式(2)和式(6)可以看出,具有反馈环路闭环系统THD 为开环系统THD 的1/(1+HfbG),即通过反馈结构减小了系统的THD。

  2 单元实现

  系统单元电路主要包括:输入放大级、误差放大器、比较器、、全桥开关电路、内部振荡电路和基准电路。

  2.1 输入放大级

  D 类音频功率放大器的输入放大级是基于运算放大器(OTA)的闭环结构来实现的,其结构如图4所示,用来根据需要对输入的音频信号作电平调整和信号放大处理,使输入信号在幅度方面能满足后级电路的要求,输入放大级的增益可以通过设置Rf1和R1 的阻值来决定。

 

图4 输入放大级电路结构

  2.2 比较器

  本文所采用的比较器电路如图5 所示,比较器电路由三级构成,即输入预放大级、判断级(或正反馈级)和输出数字整形缓冲级。预放大级采用有源负载的差分放大器来实现,其放大倍数不用很大,用来进行输入信号的放大,以提高比较器的敏感度,并把比较器的输入信号与来自正反馈级的开关噪声隔离开;判断级用来将预放大级的信号进一步放大,为比较器的核心部分,电路中通过把m8 与m9 的栅极交叉互连实现正反馈,以具备能够分辨非常小的信号的能力,并提高此级电路的增益;输出缓冲级是一个自偏置的差分放大器,它的输入是一对差分信号,用来把判断级的输出信号转化成逻辑电平(0V 或5V),即输出高电平VOH=VDD,输出低电平VOL=GND。

 

图5 比较器电路图

  2.3 内部振荡电路

  本文采用的三角波产生电路结构如图6 所示,其中m5、m6 和m7、m8 构成了两组恒流源,m9~m13 和Q1 构成了输出级。在电路中,采用将输出信号VT 分别反馈到比较器comp1 和comp2,与参考电平VREF1 和VREF2(VREF2《VREF1)进行比较,并通过一组产生两路反向的时钟信号clk 与clk0,来控制m2 和m3 的开启和关断,从而达到对电容C 进行充放电,产生三角波信号VT 的目的。

 

图6 三角波产生电路

 

  由图6 可知,VT 初始电压值为零,电路上电时,由于0《VREF2《VREF1,此时比较器comp1 输出为高电平,比较器comp2 输出为低电平,使得时钟信号clk为低电平、clk0 为高电平,m1、m3 导通,m2、m4 关断,电源通过m3、m5、m6 向电容C 充电,VT 上升,当VT=VREF2 时,clk 仍为低电平、clk0 仍为高电平不变,VT 电位继续上升,直到VT=VREF1 时,clk 变为高电平,clk0 变为低电平,m2、m4 开启,m1、m3 截止,电容C 通过m2、m7、m8 向地放电,VT 下降,当VT=VREF3 时,时钟信号clk 再次变为低电平,clk0 变为高电平,重新开始对电容C 充电,如此循环便产生了三角波信号VT,其幅值为VREF1- VREF2,频率由电容C的取值和充放电的电流大小决定。

  2.4 全桥开关电路

  输出级采用N、P 型功率开关对管组成的全桥开关电路实现,其结构及负载电流流向如图7 所示。

 

图7 全桥电路结构及负载电流示意图

  全桥开关电路工作在开关模式,随着输入信号的改变,m1~m4 的状态随之转换,始终只有对角一对功率开关管导通,另一对截止。

  2.5

  驱动电路结构如图8 所示,该电路能有效调节死区时间(N 型、P 型功率开关管同时关断),防止单臂“shoot- through”现象,并有保护关断功能。输入信号为比较器输出的PWM 脉冲信号,PWM1用来驱动N 型功率开关管,PWM2 用来驱动P 型功率开关管。为了避免全桥开关电路中的单臂“shoot- through”现象,当PWM 信号从低电平变为高电平时,PWM2 应首先变为高电平, 关断PMOS 功率开关管,随后PWM1 再变为高电平,开启NMOS 功率开关管,如图9 所示;反之,当PWM 信号从高变为低时,PWM1 先变为低电平,关断NMOS 开关功率管,随后PWM2 再变为低电平,开启PMOS 开关功率管。实际电路中,可以根据需要通过控制延迟单元的控制位Tc 来调整死区时间的长短。为减小失真,必须减小死区时间,该驱动电路采用了逐级增加驱动能力的方式来驱动功率管,从而减小了必要的死区时间,保证了低失真度。

 

图8 驱动电路结构

 

图9 死区时间

  EN 是控制模块的使能信号,正常工作为高电平;当出现过流、过温等情况时,则变为低电平,关断全桥功率开关电路。

  2.6 基准电路

  本文所设计的带隙电压基准源结构如图10 所示,主要由核心电路与启动电路两部分组成。

 

图10 基准电路

 

  核心电路中M1~M12 一起构成共源共栅电流镜来提供直流偏置,运放op1 采用两级共源共栅放大。另外,在图10 电路中引入了负反馈,保证了该偏置电路电流镜的准确性,同时与电源无关,具有很高的电源抑制比。

  电路上电时偏置电路可能会出现零电流的情况,需要启动电路保证电路能够正常工作。电路不工作时,EN、Vs1 为0,Vs2、Vs3 为1,M15、M17 不通,运放输出为高,M3~M6 也不通,整个电路不消耗电流。当EN 由0 变成1 时,由于C1 的作用,Vs1 保持为0,Vs2 为1,Vs3 变为0,此时M15、M17 导通,inp、inn 分别被拉到0、1,运放输出变为0,M3~M6 导通,M13、M14 支路开始有电流,并对C1 充电,直到Vs1 高过I2 阈值电压时,Vs2 变为0,Vs3 则变为1,M15、M17 关断。最终电路偏离零电流状态,开始正常工作,且Vs1 充至电源电压,整个启动电路不再消耗电流。

  3 结论

  本文研究了基于PWM 调制技术D 类音频功率放大器的工作原理,通过引入反馈技术减小了D 类音频功率放大器的THD;通过逐级增加驱动能力的方式减小了必要的死区时间,保证了更低的失真度;采用双路反宽调制方案,一方面抑制了系统的静态功耗,另一方面去除了输出级的LC低通滤波器,达到了减小系统成本和体积的目的。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 模拟
  • 模电
  • 运放
  • 放大
  • 放大器驱动SAR ADC电路的设计难点

    SAR ADC的驱动电路设计存在多个难点,处理不当将导致ADC输出码值跳动范围巨大。上周接触到的一个案例就是这样,与工程师检视完原理图,发现工程师是一款仪表放大器直接驱动16bit 1.5M SAR ADC,并且模拟电路由DCDC直接供电。查阅相应数

    18分钟前
  • 输入阻抗的模型与应用

    在非电量测试中,处理传感器的输出电信号是放大器的重要应用。由于传感器输出阻抗大小不一,在具体设计中需要选择输入阻抗适合的放大器进行阻抗转化,避免因为阻抗问题导致传输信号失真。本篇将讨论输入阻抗的模型与应用。     1 放大

    18分钟前
  • 放大器上升时间参数仿真

    本篇通过仿真介绍放大器的建立时间,也称为上升时间。它是高速放大电路、或在SAR ADC驱动电路设计时,需要谨慎评估的参数。     1 建立时间定义     建立时间(Setting Time,ts)是指定放大器增益时,在输入阶跃信号作用下,输出电压全

    18分钟前
  • 放大器静态功耗,输出级晶体管功耗与热阻的影响评估

    点击蓝字 关注我们     放大器参数的性能通常会受温度影响,而温度的变化来源包括环境温度波动,以及芯片自身总功耗和散热能力限制。其中放大器的总功耗包括静态功耗、输出级晶体管功耗,本篇将讨论二者与热阻参数对温度影响的评估方法。     1 静态电流与静

    18分钟前
  • 放大器总谐波失真与总谐波失真加噪声参数介绍

    在精密测量电路、音频信号处理电路中,不但要关心电路噪声,还要考虑谐波对信号失真程度的影响。本篇介绍总谐波失真与总谐波失真加噪声参数。     1 总谐波失真与总谐波失真加噪声定义     对于一款正弦波,使用示波器可以观测它幅值和

    18分钟前
  • 理解误区:放大器的输入、输出电压范围与轨到轨

    由于工艺限制放大器的输入电压范围、输出电压范围和供电电压之间存在电压差。在设计中,应确保电路在信号处理中不会因为放大器的输入、输出限制导致失真。本篇将介绍放大器输入电压范围和输出电压范围参数的使用方法与轨到轨的理解误区

    18分钟前
  • 如何评估放大器容性负载驱动的参数?

    点击蓝字 关注我们     放大器驱动容性负载,是比较容易引发稳定性问题的电路。本篇将结合仿真讨论放大器自身的容性负载能力,以及针对容性负载驱动能力不足的情况,提供一种依据放大器开环输出阻抗参数补偿容性负载驱动能力,保证电路稳定工作的方法。     1

    18分钟前
  • 跨阻放大器在光电传感电路中的稳定性分析与处理方法

    当放大器输入、输出管脚存在电容时,容易导致放大器电路不稳定,这个电容可以是电容器、也可以是具有容性特征的器件。例如本篇将讨论的光电二极管传感器,笔者从事研发时也曾爬过这个坑。由于光电二极管内部具有等效电容,所以在电路稳

    18分钟前
  • 放大器相位裕度与电路稳定性判断方法

    相位裕度与增益裕度都是用于评估放大器的稳定性的参数。其中,相位裕度使用更为普遍。本篇将介绍使用相位裕度分析放大器稳定性的方法。     1 相位裕度与增益裕度定义     如图2.109(b),相位裕度(Phase margin,φm)定义为在放大器

    18分钟前
  • 高速PCB设计中真差分TDR测试的方法原理及特点

    一、引言为了提高传输速率和传输距离,计算机行业和通信行业越来越多的采用高速串行总线。在芯片之间、板卡之间、背板和业务板之间实现高速互联。这些高速串行总线的速率从

    昨天
  • 频谱分析仪基本原理介绍

    频谱分析仪用来接收及分析信号用的,这个功能类似于收音机,收音机就是把天线接收到的高频信号经检波(解调)还原成音频信号,送到耳机或喇叭变成音波。 频谱分析仪的原理也很相似,频谱分析仪接收外来信号,可以是有线的,也可以是无线的,下图是一个超外差

    昨天
  • 功率准则与信息准则

    在研究了现有几种电子干扰效果评估准则的基础上,深入分析各准则的自身属性,阐明功率准则与信息准则分别适用于压制性干扰和欺骗干扰效果评估,而概率准则适用于某个系统的

    09-23
下载排行榜
更多
广告