高速ADC的驱动和输入网络的平衡
Ofweek 2021-10-22

  正确选择输入网络元件对于高速ADC的驱动和输入网络的平衡至关重要(参考应用笔记:“正确选择输入网络,优化高速ADC的动态性能和增益平坦度”)。

  在较高IF应用中,端接电阻的位置非常重要。交流耦合输入信号可以在变压器的原边或副边端接,具体取决于系统对高速ADC增益平坦度和动态范围的要求。宽带变压器是一个常用元件,能够在较宽的频率范围内将单端信号转换成差分信号,提供了一种快速、便捷的解决方案。

 

  原边端接

 

  本文以MAX1124 (Maxim近期推出的250MHz、10位高IF ADC)为例,讨论不同的端接架构以及对高速ADC增益平坦度和动态范围的影响。我们首先以原边端接电路为例(图1a),阻抗为50Ω的信号源作用在ADT1-1WT变压器的原边。变压器副边通过0.1µF交流耦合电容连接到MAX1124的输入滤波网络(10Ω隔离电阻 + ADC输入阻抗)。INP和INN引脚不需要额外安装输入滤波电容。这种配置下,变压器原边能够实现很好的匹配,而变压器副边的等效ADC输入阻抗为4kΩ /3pF。不平衡的副边阻抗与变压器的漏感将构成谐振电路,在450MHz至550MHz频率范围内产生增益尖峰频率(图1b)。

 

  

  图1a

  

  图1b

 

  副边端接

 

  为了在驱动差分输入时消除增益尖峰,我们移掉了原边端接电阻,采用副边端接,将阻抗为50Ω的信号源作用到ADT1-1WT。这种情况下,副边端接需要两个25Ω电阻,分别连接在顶端/底端与中心抽头(图2a)。匹配电阻之后是0.1µF交流耦合电容和输入滤波网络(15Ω串联电阻 + ADC输入阻抗),这样可以在副边获得较好的平衡信号,作用到ADC的输入。与图1配置类似,INN和INP引脚没有额外的输入滤波电容。这种端接方式可以消除450MHz至550MHz频带内的增益尖峰。必要时,可以将15Ω隔离电阻更换成30Ω,增大直流衰减。虽然这种端接方式能够获得更加平坦的频率响应,但频带宽度有所损失(图2b)。

 

  

  图2a

  

  图2b

 

  结论

 

  这篇应用笔记讨论了高速数据转换器的输入网络设计中,合理选择无源元件非常重要,而这些元件的合理使用也同样重要。例如,如果系统对增益平坦度要求非常严格,则必须避免转换器差分输入端的不平衡和谐振,保证系统的动态指标。

  两种配置中,输入端都没有使用滤波电容,这样会在INP和INN引脚引入额外的噪声。从简单分析结果看,将使信噪比(SNR)下降0.2dB到0.5dB。绝大多数高IF ADC应用中,在较宽的频率范围内保证增益的稳定性(增益平坦度)和动态范围非常关键,对于一个10位分辨率的数据转换器,可以接受噪声性能不太明显的劣化。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 模拟
  • 模电
  • 运放
  • 放大
  • 放大器电路,为什么要通过噪声的RMS值换算噪声的峰峰值?

    点击蓝字 关注我们     虽然在上一篇《来吧LTspice|算清放大器电路噪声RMS值的糊涂账》文中,分享了由放大器电压噪声密度、电流噪声密度参数,在具体电路中所导致噪声RMS值的计算方式与LTspice仿真方法。但是在电路中,对信号产生直接影响的是噪声峰峰值。  

    08-09
  • 关于数模转换的38个提问

    本文章是关于ADC/DAC设计经典问答,涵盖时钟占空比、共模电压、增益误差、微分相位误差、互调失真等常见问题。 1. 什么是小信号带宽(SSBW)? 小信号带宽(Small Signal Bandwidth (SSBW))是指在指定的幅值输入信号及特定的频率下,它的输出幅值比低频时

    05-10
  • 图集:20个常用模拟电路

    一、 桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型: 2、桥式整流电流流向过程: 输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、 电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐

    04-27
  • ADC输入接口设计六个条件

    采用高输入频率、高速模数转换器(ADC)的系统设计是一项具挑战性的任务。ADC输入接口设计有6个主要条件:输入阻抗、输入驱动、带宽、通带平坦度、噪声和失真。看看这里罗列的这六个条件,你都了解吗? 输入阻抗 输入阻抗是设计的特征阻抗。ADC的内部输入阻抗

    04-21
  • 运放的参数含义

    以后将在使用运放中接触到的关于运放的参数含义记在这里。 最近在使用一款PGA,在PGA输入端接地时发现输出总有个矩形波信号,放大1000倍后非常明显,怀疑是电源引起的干扰。开始的时候在输入正负电源处都 加了100uf和0.1的电容,但效果不明显,后来准备再电源

    04-13
  • 为什么要一点接地(图解)

    本文详细介绍了PCB板中模拟电路和数字电路共地和不共地的区别。 为了大家看的明白...我就用ORCAD画了两个电路,一个是一个普通的三极管模拟放大电路,另一个是数字电路振荡器...好了不废话了...上图... 下面是一点接地时候两个电路的电路图... 其实在原理图中没

    03-25
  • 相位补偿到底是什么鬼?

    帮朋友做镍氢充电器,利用镍氢电池充满电时电压有一个微小的下降这个特点来识别是否已经充满,比如1.2V的镍氢电池,快充满的时候,电压在1.35V,之后逐步下降,电压可以低于1.30V。所以需要单片机间歇检测电池两端电压,大概充3秒钟电再停止,之后检测电池两

    03-26
  • 运放手册之噪声篇解读

    1.一个有趣的问题? 2 个 1kΩ 电阻串联,与 1 个 2kΩ 电阻噪声一致吗? 2 个 500Ω 电阻并联,与 1 个 2kΩ 电阻噪声一致吗? 2.噪声的基本特性 1) 它的波形在任意时刻都是不确定的,因此它是广谱的,有低频也有高频; 2) 它的幅度又是有限制的,这与数学

    03-11
  • 模拟电路印制电路板布局走线要点

    有一个公认的准则就是在所有模拟电路印制电路板中,信号线应尽可能的短,这是因为信号线越长,电路中的感应和电容捐合就越多,这是不希望看到的。现实情况是,不可能将所有的信号线都做成最短,因而,布线时首先要考虑的就是最容易产生干扰的信号线。 在模拟

    03-10
  • RC电路详解

    1.RC电路的矩形脉冲响应 若将矩形脉冲序列信号加在电压初值为零的RC串联电路上,电路的瞬变过程就周期性地发生了。显然,RC电路的脉冲响应就是连续的电容充放电过程。如图所示。 若矩形脉冲的幅度为U,脉宽为tp。电容上的电压可表示为: 电阻上的电压可表示

    03-08
  • 设计实例:运放应用电路分析

    1、运放在有源滤波中的应用 上图是典型的有源滤波电路(赛伦-凯 电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R

    03-03
  • 通俗的角度看待拉普拉斯变换

    本文将从通俗的角度看待拉普拉斯变换。 发明者 奥列弗.赫维赛德,维多利亚时期英国人,全靠自学,听力残疾。很多人熟悉赫维赛德是因为MATLAB有一个赫维赛德(Heaviside)函数。 赫维赛德简化了麦克斯韦方程组:即变化的电场产生磁场,变化的磁场产生电场。让2

    03-03
下载排行榜
更多
广告
X
广告