五大规则分析比较器电路
mouser 2021-09-24

比较器,是一个看起来简单但又让人极为痛苦的器件。如果你是刚学模拟电子技术的学生,那么在初次使用它时,不仅会被其诡异的表现难住,还将百思不得其解:如此简单的比较器,怎么就这般不听话呢?

《新概念模拟电路》系列丛书之《信号处理电路》一本书中这样说:

其实,比较器最常见的诡异现象就是翻转抖动。以一个基准电压为0V,输入信号为从-1V到1V的三角波为例,当输入信号穿越基准电压点时,理论上:输出信号应该立即翻转,干脆利索,且输入信号应该不受任何影响。但实际情况如图1左图所示:输出信号在翻转位置出现了多次抖动,然后才归于平静,然后,输入信号居然也出现了抖动毛刺。

“图1图1 比较器的翻转抖动及克服抖动带来的效果

造成这种现象的原因很多,电源稳定性和地线稳定性不强是主要原因。其本质原理是,比较器的输出端突然发生状态变化时,会导致内部工作电流发生脉冲式突变,这个变化电流作用在电源电压上,会导致电源电压出现脉动;作用在地线上,会导致地线电位出现脉动。这种脉动带来的直接后果就是,比较器的输入状态发生变化:原本输入信号已经高于基准电压,却因为地线脉动的存在,出现瞬间的输入信号低于基准电压,比较器出现误翻转。这种误翻转持续作用,就会出现翻转抖动。

翻转抖动的存在,一定是输入信号在处于基准电压附近时发生。当输入电压持续增大,以至于地线抖动不足以改变比较器的输入状态时,那么输出就归于平静了。

克服翻转抖动的本质方法是加强电源和地线的稳定性——想尽一切办法让电源和地线接近理论要求:不管电源、地线上流过多大电流,其电压都是恒定不变的。比如加粗电源线(地线)、缩短电源线(地线)长度,增加合适的电源旁路、去耦电容,使用高质量的地平面,或者将数字地和模拟地分开且实现单点对接。

克服翻转抖动的另外一种方法,就是给比较器增加迟滞:用正反馈将原本开环的比较器,改变成迟滞比较器。图1右图,即为增加了迟滞后的波形,可见其翻转抖动几乎不存在了。

五大规则,破除“诡异现象”

相对来说,高速比较器更易出现各种各样的诡异现象。因此,我们在设计之初就必须牢记以下五大规则,以最大程度地避免诡异现象。

01、给比较器电路增加合适的旁路电容

在器件电源管脚的最近处,对地接一个或者两个电容,以避免突变电流在漫长的电源线上——含有电阻和电感——产生的突变压降。

02、让比较器电路使用地平面

由于地平面具有极大的面积,直接带来的好处有两点:第一,它具有极低的导通电阻,可以在通过大电流时保持地平面上任意两点之间的电位差足够小,以利于“地”与理论接近。第二,它还具有极低的电感,对高频电流,也不会产生足够大的压降。

03、用高速布线技术实施PCB设计

高速布线技术有别于低速,关键在于考虑了杂散参数。在低频领域,电路板中的两个隔离线,具有足够大的电阻,但在高速领域,它们之间的杂散电容就会起作用。同时,长长的导线存在的电感,也会跳出来破坏正常的工作。因此,走线、位置、间距、方向、粗细、长短、过孔等,都将对高速电路产生不可忽视的影响。此事说来话长,要设计高速比较器电路,必须认真研读相关资料。

04、使用合适的探头、示波器

如果要观察比较器输入输出状态,则一定要注意:探头和示波器不是理想的,它们会影响电路的正常工作。

05、注意降低信号源内阻

高速比较器接收的是高速信号,因此它非常惧怕低通滤波器。信号源电阻,也就是前级信号的输出电阻,会与比较器输入端电容组成低通滤波器。提高此低通滤波器上限截止频率,是唯一的解决方案。而要如此,则有两条路:第一,降低前级信号源的输出电阻,第二,降低比较器输入端的等效输入电容。

一般来说,比较器入端等效电容主要由比较器芯片性能决定,也受线路与周边“地”之间的杂散电容影响。当选择了输入端电容最小的比较器,又通过优秀的电路板设计,将杂散电容降至最小,此时应重点考虑降低前级信号源内阻。

读完本文,对于如何妙解比较器,你 get 到方法了吗? 

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 模拟
  • 模电
  • 运放
  • 放大
  • 放大器电路,为什么要通过噪声的RMS值换算噪声的峰峰值?

    点击蓝字 关注我们     虽然在上一篇《来吧LTspice|算清放大器电路噪声RMS值的糊涂账》文中,分享了由放大器电压噪声密度、电流噪声密度参数,在具体电路中所导致噪声RMS值的计算方式与LTspice仿真方法。但是在电路中,对信号产生直接影响的是噪声峰峰值。  

    08-09
  • 关于数模转换的38个提问

    本文章是关于ADC/DAC设计经典问答,涵盖时钟占空比、共模电压、增益误差、微分相位误差、互调失真等常见问题。 1. 什么是小信号带宽(SSBW)? 小信号带宽(Small Signal Bandwidth (SSBW))是指在指定的幅值输入信号及特定的频率下,它的输出幅值比低频时

    05-10
  • 图集:20个常用模拟电路

    一、 桥式整流电路 1、二极管的单向导电性: 伏安特性曲线: 理想开关模型和恒压降模型: 2、桥式整流电流流向过程: 输入输出波形: 3、计算:Vo, Io,二极管反向电压。 二、 电源滤波器 1、电源滤波的过程分析: 波形形成过程: 2、计算:滤波电容的容量和耐

    04-27
  • ADC输入接口设计六个条件

    采用高输入频率、高速模数转换器(ADC)的系统设计是一项具挑战性的任务。ADC输入接口设计有6个主要条件:输入阻抗、输入驱动、带宽、通带平坦度、噪声和失真。看看这里罗列的这六个条件,你都了解吗? 输入阻抗 输入阻抗是设计的特征阻抗。ADC的内部输入阻抗

    04-21
  • 运放的参数含义

    以后将在使用运放中接触到的关于运放的参数含义记在这里。 最近在使用一款PGA,在PGA输入端接地时发现输出总有个矩形波信号,放大1000倍后非常明显,怀疑是电源引起的干扰。开始的时候在输入正负电源处都 加了100uf和0.1的电容,但效果不明显,后来准备再电源

    04-13
  • 为什么要一点接地(图解)

    本文详细介绍了PCB板中模拟电路和数字电路共地和不共地的区别。 为了大家看的明白...我就用ORCAD画了两个电路,一个是一个普通的三极管模拟放大电路,另一个是数字电路振荡器...好了不废话了...上图... 下面是一点接地时候两个电路的电路图... 其实在原理图中没

    03-25
  • 相位补偿到底是什么鬼?

    帮朋友做镍氢充电器,利用镍氢电池充满电时电压有一个微小的下降这个特点来识别是否已经充满,比如1.2V的镍氢电池,快充满的时候,电压在1.35V,之后逐步下降,电压可以低于1.30V。所以需要单片机间歇检测电池两端电压,大概充3秒钟电再停止,之后检测电池两

    03-26
  • 运放手册之噪声篇解读

    1.一个有趣的问题? 2 个 1kΩ 电阻串联,与 1 个 2kΩ 电阻噪声一致吗? 2 个 500Ω 电阻并联,与 1 个 2kΩ 电阻噪声一致吗? 2.噪声的基本特性 1) 它的波形在任意时刻都是不确定的,因此它是广谱的,有低频也有高频; 2) 它的幅度又是有限制的,这与数学

    03-11
  • 模拟电路印制电路板布局走线要点

    有一个公认的准则就是在所有模拟电路印制电路板中,信号线应尽可能的短,这是因为信号线越长,电路中的感应和电容捐合就越多,这是不希望看到的。现实情况是,不可能将所有的信号线都做成最短,因而,布线时首先要考虑的就是最容易产生干扰的信号线。 在模拟

    03-10
  • RC电路详解

    1.RC电路的矩形脉冲响应 若将矩形脉冲序列信号加在电压初值为零的RC串联电路上,电路的瞬变过程就周期性地发生了。显然,RC电路的脉冲响应就是连续的电容充放电过程。如图所示。 若矩形脉冲的幅度为U,脉宽为tp。电容上的电压可表示为: 电阻上的电压可表示

    03-08
  • 设计实例:运放应用电路分析

    1、运放在有源滤波中的应用 上图是典型的有源滤波电路(赛伦-凯 电路,是巴特沃兹电路的一种)。有源滤波的好处是可以让大于截止频率的信号更快速的衰减,而且滤波特性对电容、电阻的要求不高。 该电路的设计要点是:在满足合适的截止频率的条件下,尽可能将R

    03-03
  • 通俗的角度看待拉普拉斯变换

    本文将从通俗的角度看待拉普拉斯变换。 发明者 奥列弗.赫维赛德,维多利亚时期英国人,全靠自学,听力残疾。很多人熟悉赫维赛德是因为MATLAB有一个赫维赛德(Heaviside)函数。 赫维赛德简化了麦克斯韦方程组:即变化的电场产生磁场,变化的磁场产生电场。让2

    03-03
下载排行榜
更多
EE直播间
更多
广告
X
广告