如何提高RF测量技巧并完整发挥RF设备的效能
物联网在线 2022-11-23

新款 RF 仪器均具备绝佳的精确度与测量功能,已大幅超越之前的产品,但若讯号无法达到一定质量,这些仪器亦无法发挥其效能;声音测量实作与相关要素,将可让使用者完全了解自己投资的 RF仪器。

进行稳定的 RF 测量作业

在理想状态下,应可轻松进行RF测量作业,但实际上却有着许多难题;目前既有的 RF 仪器即可满足主要的 RF 测量作业,如功率、频率与噪声,但“获得结果”不见得就是“获得正确的结果”。若能于 RF 测量作业中建构最佳实作范例,就能确保获得稳定、精确,且可重复使用的测量结果。

先了解术语

诸如“精确度”、“可重复性”、“分辨率”,与“不确定性”的术语,均往往于 RF 应用中遭混用或误用,反而降低了测量的正确度。在进行 RF 测量作业之前,必须先了解重要术语,还有其正确的对应文字。

相较于模拟量表而言,当要于模拟量表上分辨正确读数时,仪器的数字显示方式绝对要简单许多。然而,若数字显示器呈现小数点后 3 位的数值,则使用者亦无法了解仪器或测量作业的分辨率与精确性。

即便可显示数千个 dB 的功率,或到小数单位的 Hertz 频率,亦不代表该款仪器就能测量数分钟之内的变化,所显示的位数应要能超过仪器的测量功能所及。为了完整了解 RF 仪器的功能,应随时参阅规格说明或数据,正确的术语定义,将可减少使用者对测量作业的疑虑。

接着列出常见的数个关键术语:
˙分辨率 (Resolution)──仪器所能确实侦测的最小变化量 ;
˙可重复性(Repeatability)──在相同条件与结果之下,可重复进行的测量次数;
˙不确定性(Uncertainty)──将测得的未知绝对值予以量化 ;
˙精确度(Accuracy)──仪器在已知误差范围内所能测得的参数实际/绝对值。

若能预估错误信息来源,往往就能决定测量作业的不确定性。除了上面提到的术语之外,亦可至 National Institute Standards and Technology (NIST) 或其它标准机构,找到相关规格说明文件。可追踪性 (Traceability) 则可确保所有测量仪器均是以常见标准所定义。

而“规格 (Specification) ”则是由测试设备的保证效能,并可由 NIST 追踪相关校准认证。“典型、常见 (Typical) ”意指已完全测试的效能,但并未纳入测量的不确定性。“名目、表列 (Nominal) ”效能为辅助信息,而并非所有仪器都经过此项测量。

精确度为仪器在已知误差范围内所能测得的参数实际/绝对值,亦即所谓的 X plus 或 minus Y。若没有某些误差限制与单位,则测量值“34”并无任何意义。同样的,仅有“5”的误差规格亦无任何意义;但“5%”的误差规格亦无意义。

“5%”可代表“±5%”,亦可为“+3%”或“-2%”;举例来说,精确度的正确表示方式应为“34 V +/- 1 V”、“34 V +/- 1%”,或“34 V +2/-1 V”。进一步了解 RF 测量术语,则可更熟悉其意义。若要能与别人精确沟通测量作业,则应先了解相关结果。

了解自己的受测装置

受测装置(Device under test,DUT) 可能大幅影响 RF 测量作业。举例来说,温度就可能影响稳定性与可重复性,许多 RF 装置与仪器并不会自行补偿温度变化,因此必须先稳定温度,才能将测量作业的漂移错误降至最低。还有立即的环境影响(如是否有空调循环、是否加盖与嵌板、处于室内或室外、是否靠近热源) 均应纳入变量考虑,并应注意暖机次数、DUT 冷却条件,与外围环境,与保持稳定的温度。

在主动式装置中,多余的功率可能造成装置发热;以高功率的放大器为例,DUT 本身可达稳定的温度,但后续的组件就不一定,衔接放大器输出的切换器与就常有升温现象。这时就可能要找出由放大器所产生的不定讯号,如谐波。

电源供应线可能产生环境噪声,并直接影响输出;而当放大器处于压缩状态时,若测量其线性参数 (增益与相位) 亦将无法得到相关结果。因为所有因素均将影响 RF 测量作业的精确度,在测量装置之前,先行了解 DUT、作业方式,与其对 RF 测量参数的影响,才能获得有意义的结果。

找出不确定性的范围

若要比对 RF 测试设备的规格与 DUT 的测量需求,亦略显不足;若 RF 测量作业的频率较高,而仪器又较不符合所需规格时,更加扩大不确定性的范围。接着各个测量步骤均可能发生错误,进而影响整体结果。当进行错误测量时,应先找出测量作业的可能错误,再找出可能影响的 DUT。

使用者应了解仪器的重要操作规格,还有各个测量步骤所牵连的装置 (包含 DUT 在内);而其它相关规格则应了解配对、功率、频率响应与噪声系数。亦应了解所有参数的容错范围,并记住如下的参数:
˙RF 切换的可重复性、老化程度,与功率承载;
˙耦合器的方向系数,连接线的相位稳定性,还有的插入(Insert)损耗与折返损耗 (Return loss);
˙电路板线路的阻抗质量、适配卡插槽,与电路板的传输开关情形 ;
˙测量作业的电磁波干扰(EMI)强度。

并未正式纳入考虑的还有冷却、谐波、混附讯号(Spur),与其它非线性动作,均可能影响测量作业。可查阅整体设定情形,再找出各个部分的误差幅度,以得到测量不确定性的实际数据。另应找出错误来源,以了解其对精确度、可重复性与不确定性的影响,如此将可得到更精准的测量结果,并可高效率决定预算与资源。

注意所有组件与连结

产品的开发、设计、测试,直到上市的成本,均为巨额的投资。公司的能否延续,可能就以 1 款产品的效能而定生死。对高效能的 RF 测试设备来说,由于必须能满足甚或超过目前市场所需的重要规格,因此其可能投入的资金更是难以估计。除了必须具备竞争优势之外,亦可能影响公司的后续营收。

但是昂贵、高效能,且精确校准过的 DUT 与测试系统还不够,针对中间用以衔接装置用的连结组件,亦必须考虑其质量与可重复性。若能提升关键规格达 1/10 或 1/5 的 dB,就可能达到高竞争优势。

对绝大部分的标准而言,最好是能达到 1:1.5 的电压驻波比(VSWR),但匹配(Match)的强度亦可能影响错误的为匹配的不确定性达 +/-0.35dB (约略值)。当造成过多的不确定性时,就不可能达到 0.2 dB 的关键规格。

其它受到忽略的项目 (如连接线、切换器、衰减器、插槽、转接器,与配件) 亦能影响整体的测量结果。若要开始测量作业,应先达到所需的精确度,接着选择合适的组件。依目前公认的标准,测量系统的效能最好达到 DUT 受测参数的 10 倍之谱。

若已拥有高质量的讯号路径,则接着就是布署完整的测量实作;使用者应确实清洁并存放连接线、接头,与转接器,就算是最高级的连接线与转接器也会磨损,若零件老化就应淘汰,这些都算测试作业的耗材,并应逐步减少转接器的使用机会。

此外应定期使用扳手与线路量表进行调整,即可尽量避免热切换(Hot-switching);并请注意,应适时静电放电 (Electro-static discharge,ESD)。即便于测试系统与 DUT 之间使用最高质量的组件,若衔接的零件过多,亦可能造成测量错误。

为测量作业选用正确的工具

根据所要测量的参数与所需的精确度,其测量 DUT 的 RF 设备亦有所不同。能投资设备当然最好,但若仅能发挥设备某部分的效能,就形成预算浪费。若仅需测量 RF 功率,则 RF 功率计当然优于向量讯号分析器 (VSA)。

纯量(Scalar)仪器仅能测量强度 (振幅),而向量仪器则可测量强度与相位。就算测量作业不需相位值,则由于向量仪器的相位信息可找出系统中的无用反射并将之量化,因此亦可用以修正错误。

在购买 RF 设备时,价格往往并不等同于效能。高质量的扫频调协频谱分析器 (Swept-tuned spectrum analyzer),往往就能占去大部分的预算;就该款仪器原始的测量效能而言,虽然已可达 ± 1 dB 或较差的精确度并可用于一般测量,但却无法满足绝对 RF 功率的测量需要。同样的,若使用中的仪器可达 -140 dBm/Hz 的噪声水平,此款仪器就难以测量 -155 dBm/Hz 噪声水平的 DUT。

所以请为测量作业选择正确的工具;若购买的设备效能超出所需的测量精确度太多,就浪费了成本与资源,而且可能排挤到其它部分的预算分配。在某些情况下,连接线与切换器甚至更有助于提升测量质量。

开发测量程序

一旦建构自己所需的最佳实作,即可将之安装至测量程序中,更有利于整个团队的沟通,接着就能让 RF 测量结果达到更好的可重复性与一致性。举例来说,测量程序的常见问题之一即为:“应多久校准 1 次”。

许多 RF 仪器对环境的变化极其敏感,因此就必须时常校准设备;高精确度的测量需求亦常常影响了校准频率。不论哪种情况,均应了解 RF 设备的校准需求,并将之列入测量程序中。

从设计、检验、测试,到制造的所有程序,均将影响 RF 的测量效能。使用者亦需考虑制造过程所应测试并检验的作业参数。而可能影响精确度、可重复性,与不确定性的前/后 1 项程序 (如重新作业、焊接、组装,与绝缘),均应纳入考虑。

若要建构良好的 RF 实作,亦应考虑相关程序。亦可连带简化学习与标准化的过程。而后续从建构程序直到产品使用寿命,“一致性”亦将影响 RF 参数与测量结果。

提高 RF 测量作业的质量

要进行 RF 测量作业很简单,但要能准确测量就有些许难度。若能建构完整实作并用于程序之中,将可提升 RF 测量的质量。

还有许多方法可找出并建置最佳实作范例。应不断设法提升 RF 测量质量,以确实了解测量要点并用于实作之中。从提高 RF 测量技巧到完整发挥 RF 设备的效能,此篇技术文章所提及的步骤均属于基础概念而已。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 测试
  • 测量
  • 示波器
  • 探头
  • 浅谈数码电视及其测量

    数码电视测量 电讯管理局局长已于二零零七年六月四日宣布,香港的数码地面电视服务会采用国家制式作为标准。两家免费电视广播机构,即亚洲电视和无线电视将于二零零七年底之前开展数码及仿真电视的同步广播。其实,数码电视大家并不陌生,本地所有收费电视营办商现已透过有线,卫星和宽频网络提供数码电视。只是香港要达致全面数码广播,地面电视广播机构必须推出数码地面电视服务。政府拟于二零一二年终止模拟广播,但会视进一...

    昨天
  • 数字电视及测量

    1、 数字电视 数字电视在全世界迅速开展,我国也加快了播放进程。按广电部要求,直辖市、沿海发达地区、各省会城市 2005 年要开通数字电视, 2015 年全国开通数字电视,基本完成模拟电视向数字电视过渡。为迎接 2008 年奥运会,各地都会在此之前掀起摸拟电视向数字电视平移的高潮。 所谓数字电视,应该是电视的全过程中,其视、音频都是数字信号,包括摄制、剪接、编辑、存储、播放、传输、接收。这就是说,...

    昨天
  • 中短波广播信号场强测量及空中管理

    中短波广播的发射、接收的原理,一般人都明白,可是广播发射机所发射的空中信号在某一处信号有多大,此处的收音机是否能收到,这就涉及到该点的场强及场强测量问题,一般人是不关心的,但对于广播电台来说,他必须知道自己台的覆盖范围、收听效果,必须进行场强测量。再则广电管理部门,无线电管理委员会,他必须监测本辖区广播信号,哪些是本辖区的台,是否有非法的台,这就要通过场强测量来搜索。本文将从场强测量角度对此课题作...

    昨天
  • DVB-C 数字电视的测试

    1 引言 我国播放数字电视的进程已出台,广电部要求沿海发达地区 2005 年开通数字电视, 2015 年全国开通数字电视,停播模拟电视。近年来不少城市都已开始试播,各广电局、广电网络传输中心、有线台都正在试验之中。数字电视相对于模拟电视来说是一个全新的概念,对于数字电视系统的测试也是一个全新的概念,我们必须按数字电视的标准,结合实际情况,去探讨它的测试方法,研制、选用新的测试系统和仪器。 2 DV...

    昨天
  • 电视信号场强测量及空中管理

    在一个地区的空中,有些什么电视信号,它们的场强是多少,这是广电管理部门和无委会关心的课题。本文将从电子测量的角度来进行讨论。 一、 电视信号及其场强 众所周知,电视信号是在42-860MHz范围内的载波信号上,调制视频信号和伴音信号。要分析这些信号特征这是视频分析和音频分析的课题,但就其此信号强弱来说,是将电视信号的行同步信号电平作表征,因行同步信号是脉冲式,故用峰值作为度量。 对于场强测量及场...

    昨天
  • 采用频谱分析仪测量CATV载噪比(C/N)的方法

    1、 CATV载噪比(C/N)的定义: 系指图像载波电平有效值与规定带宽内系统噪声电平均方根值之比,用dB表示,即: 噪声带宽BW=5.75MHz(中国) 2、 测量步骤 1) 测量方框图如图1所示 2) 调谐频谱分析仪找到被测的图像载波,置于屏幕的中心 3) 调整频谱分析仪处于如下状态,并测量图像载波电平 中频分辨率带宽: 300kHz 视频滤波器带宽: 300kHz最小 对数标...

    昨天
  • 用频谱分析法测量数字信号电平

    在数字电视、数字传输、数据通信中,其信号是采用多种调制方式的数字信号,这时的数字信号电平已不能用一般传统的方法来定度和测量,本文将引入每赫带宽功率(dBmV/Hz)法解决数字电平测量。 一、概述 电压是电子学的基本参数,也称电平。电平和电压是同一个参数,一般来说,它们的区别在于单位不同。电压是以伏(V)作单位,如V、mV、μV、KV等;电平是以dB作单位,如dBv、dBmV、dBμV等。 电信号的...

    昨天
  • MDO4000 系列混合域分析仪应用之二调制域分析

    一. 概述 泰克最新推出的MDO4000系列混合域分析仪(图1-1),是一款具有创新意义的分析仪,自它诞生之日起,已经获得国内外十多个最佳创新奖项(图1-2)。MDO4000之所以获得巨大的成功,根源在于它推出了创新的概念-跨域分析,利用跨域分析,可以发现传统手段无法发现的嵌入式射频系统以及数字射频系统的疑难杂症。 MDO4000 系列混合域分析仪究竟是什么?我们可以将其基本功能总结如下: - ...

    昨天
  • 使用混合域示波器进行雷达分析

    随着无线技术的应用日益普遍,设计工程师必须同时检测这两个领域的信号。混合域示波器的诞生从根本上改变了RF设计的调试与测试的方法,泰克在一台仪器中同时提供了示波器和频谱分析仪功能,并且提供独创的混合域触发与时间相关的信号分析。新的MDO4000 混合域示波器系列有助于工程师捕获时间相关的模拟、数字和射频信号,获得完整的系统级视图。目前已经有大量的资料描述MDO4000混合域示波器的结构及其可以怎样用...

    昨天
  • 如何选择射频测试仪器

    当前, 基于射频原理的无线通信产品俯拾即是,其数量的增长速度也非常惊人。从蜂窝电话和无线P D A,到支持WiFi的笔记本电脑、蓝牙耳机、射频身份标签、无线医疗设备和Zigbee传感器,射频设备的市场规模在飞速扩大。要想进行全面的生产测试并提高测试产能,测试工程师们必须懂得选用最适合的仪器完成这些测试工作。那么,如何选择射频测试仪器呢? 一、射频信号源的选择 所有的射频信号源都能产生连续(CW)射...

    昨天
  • MDO4000 系列混合域分析仪应用之一跨域分析

    泰克最新推出的MDO4000系列混合域分析仪(图1-1),是一款具有创新意义的分析仪,自它诞生之日起,已经获得国内外十多个最佳创新奖项(图1-2)。MDO4000之所以获得巨大的成功,根源在于它推出了创新的概念-跨域分析,利用跨域分析,可以发现传统手段无法发现的嵌入式射频系统以及数字射频系统的疑难杂症。  MDO4000 系列混合域分析仪究竟是什么?我们可以将其基本功能总结如下: - 四通道50...

    昨天
  • MDO4000混合域示波器结构解密

    MDO4000混合域示波器是近20年来示波器市场最大的技术突破与创新,它拥有相当独特的结构,泰克科技公司在发明与设计MDO4000混合域示波器其间,共申请了二十多项专利,显明它与一般传统的频谱分析仪或示波器的结构有异。不少人误以为MDO4000混合域示波器只是将一台频谱分析仪与一台混合信号示波器集成在一起,使它拥有“多域”分析的功能。事实上它的创新远远超出这个范围,使它不单拥有“多域”分析,更是“...

    昨天
下载排行榜
更多
广告