RF 工程师需要了解的电源管理
mouser 2021-07-30

电源管理是一门科学艺术,它通过优化输入和输出信号来最大化 RF 设备的效率和性能,这不是一件容易的事。每台网络设备都有自己独特的功率需求。更高的数据速率通常意味着更高的功耗和复杂性,这可能会带来损失,进而降低可靠性和增加成本。低数据速率设备(例如支持物联网的那些设备)功率极小,以便节省宝贵的电池电源的每一毫秒。

“”

除此以外,RF 工程师还面临静电放电的难题,它几乎可以炸毁一台设备的电路板。想象一下,在干燥的冬日走过地毯后,手碰触到门把手。咝!在您碰到门把手的那一刻,它只会让您的手臂汗毛竖起来,感到轻微不适,但是,却会让设备产生严重的性能问题,或者甚至损坏敏感的电子元件。每个人都能按下电源按钮,但要设计出电源管理和 RF 设备,则需要以下的专业知识。

高功率 RF

伯克利实验室将高功率 RF 定义为一个专门的工程领域,主要研究运行频率远高于音频频段的元件和系统。高功率 RF 应用包括军事和商业雷达、卫星通信和无线基础设施,例如蜂窝基站。工程师必须放大这些系统的功率,以便在长距离和恶劣条件下可靠地传输信号。为此,他们使用了功率放大器 (PA)。

与放大 .jpeg 图像文件的大小一样,功率放大器可以在不损坏或无失真的情况下增加网络设备的输出。但是,增加功率也会产生大量的热量。温度管理是高功率 RF 设备需要解决的难题之一。工程师必须满足严格的输出要求,同时保持设备足够冷却,以保证系统可靠运行。

出于此原因,大部分高功率 RF 设备都采用砷化镓 (GaAs) 或氮化镓 (GaN) 制造。这两种复合半导体都能处理高功率 RF 系统产生的热量,但 GaN 正迅速成为首选技术。GaN 放大器具备出色的热性能,能够提供比传统技术更高的输出,且最多能够降低 20% 的功耗。

GaN 帮助实现了更高频率下的实时通信。以敌我识别 (IFF) 系统为例,这些系统让民用航空交通管制部门能够识别飞机,并从塔楼上确认它们的距离。

“”

高功率 RF 设备发展的下一步是毫米波 (mmW):介于 30 GHz 和 300 GHz 之间的超高频段,其中许多频率是部署 5G 无线网络的关键。采用这些频率时,电源管理是一个真正的挑战。

低功率 RF

低功率 RF 主要涉及更低频率的低传输速率、短距离无线通信。应用包括物联网;节能型智能家居设备、恒温器、HVAC、照明控制和家居安防;用于监测停车、交通堵塞、路灯和废弃物管理状况的智能城市设备;以及车联网。

“”

对于所有低功率 RF 产品来说,电源管理的关键问题在于电池的使用寿命。物联网要能够使用,传感器必须持续很长时间。房主和市民并不希望每年更换设备中的电池,因此工程师必须设计出低功率、能够维持十年或更久时间的解决方案。

更复杂的是,每个低功率网络对功率的要求各不相同,并且有数十个网络之多,包括 Wi-Fi、蓝牙、Zigbee 3.0、蓝牙低功耗、Thread、LTE Cat-M1 (LTE-M) 和窄带物联网 (NB-IoT)。

例如,Wi-Fi 网络会根据发送的文件的大小,以及路由器/接入点和连接设备之间的距离,在 2.4GHz 和 5GHz 之间切换。频率更高时,系统消耗的功率更高,频率更低时,消耗的功率更低。路由器采用硬接线方式,因此不受影响,但互联设备的电池电量会耗尽,无论是智能手机、笔记本电脑还是其他设备。通常,您的设备和连接设备之间的距离越远,所需的功率就越大。蓝牙消耗的功率比 Wi-Fi 低,Wi-Fi 需要的功率又比蜂窝低。

根据我们在 Keysight Technologies 任职的合作伙伴的说法,“工程师必须准确测量电池的损耗,了解这些物联网设备的功耗模式,以实现客户期望的长电池寿命。”只有这样,我们才能构建一个网络,以强大的方式将人类和他们的设备连接起来,进而简化我们的生活。

集成的作用

所有功率水平都能通过集成受益。从系统层面来看,将多个组件集成到单个设备能够最小化功率和效率损失,简化设计和网络部署,并且帮助加快各种产品(从雷达到路由器)的上市速度。从设备层面来看,家庭、城市或厂区“设备”具备的互操作性能够最大化生产力,并最大限度地节能。 

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • RF
  • 射频
  • 通信
  • 无线
  • 5G地铁场景创新组网方案原理及方案试点

    一、方案背景 进入5G时代后,手机终端天线主要是2T4R/4T4R配置,因此,在一些重要的场景,5G基站、5G室内分布系统必须达到4路以上射频发射通道(即:信源侧至少能满足4T) ,才能使 5G 手机体验到四通道下载速率。但是,在一些存量室内分布系统中, 目前的硬

    05-11
  • 5G NSA向SA演进,驻留比及感知提升

    一、背景 2021年是 “十四五”开局之年,也是公司深化5G 发展,巩固领先优势的关键之年。随着5G用户发展愈发迅速,在NSA向SA演进过程中,网络面临SA驻留比低、上行速率差、语音感知劣等严峻挑战。 1、SA驻留问题 截至3月底,某地已发展5G终端100万,5G日登网

    05-10
  • 5G 网络改善 NR 边缘覆盖的几个方向

    一、研究背景 作为第五代移动通信技术,相对于4G,5G拥有更高的速率、更低的时延以及更大的连接数,不仅可以进一步提升用户的网络体验,为移动终端带来更快的传输速度,同时还将满足未来万物互联的应用需求, 赋予万物在线连接的能力。但同时由于5G频段较高,

    05-08
  • “传统”通信会被卫星通信网络所取代吗?

    当下,5G已是通信行业里一直在持续的竞争焦点。可就在关于5G的话题不断之时,卫星通信这个“新技术”也悄悄地变成一个热议的焦点。 此前就有马斯克一直在实施的“星链计划”,国内也一直有这样类似的计划。不少相关企业还都发射了先导卫星并进行了相关的验证

    05-08
  • 5G 设备功耗分析及省电方案实施

    1.方案背景 随着5G红红火火的大建设, 5G站点设备越来越多,其功耗经统计约是同等条件下的4G设备的3倍左右,从而带来了各种问题,诸如:电源配套的改造,现有线路的修改,机房的改造,电费的提升等等。所以如何想方设法降低5G设备功耗,对相关投资的降低至关

    05-07
  • 5G上行干扰处理经验总结

    一、问题描述 随着对于移动网运营商而言,频谱资源是其最有价值的资产之一,而干扰是最可怕的敌人之一。随着网络演进,组网结构越来越复杂, 网络中会出现各种各样的信号源。当这些非网络服务信号落入 NR 的上行接收带内时,就会造成网络的上行干扰,大量的网

    05-07
  • 校园 5G 场景解决方案

    一、概述 随着5G规模化建设,各种场景规划建设各有不同特点和需求。校园场景特点: 功能区多,占地面积广,需要室内外协同覆盖;校园5G 业务特点:视频业务占比高,流量飞速增长,话务潮汐效应明显;校园5G建网挑战:功能区多规划复杂、工期不可控、网络维护难

    05-06
  • 电联5G 合建NSA 网络规划和优化

    1、概述 NSA(Non-standalone, 非独立) 组网模式下, 同一 NSA 网络内部必然存在锚点区和非锚点区, 形成 NSA 网络内不同区域之间的边界。而共建共享又新增了承建方、 共享方的维度, 引入新的共享策略配置, 导致网络的结构更加复杂化。共建共享降低 CAPEX

    05-06
  • LTE与NR同频组网场景间同频干扰

    1、背景介绍 5G初期为了快速建网, 在保障4G用户体验需求同时, 快速建起稳定、 高速、 体验优的5G网络, 这时LTE-NR组网就成了建网首选。LTE-NR组网后, 在2.6GHz带宽( 范围[2515,2675]) 为160MHz的连续频谱中, NR会占用频谱范围[2515,2615]的带宽为100MH

    05-06
  • 4G/5G 互操作验证

    — 、互操作策略简介 互操作是基于蜂窝移动通信的移动性管理机制,能够实现网络的业务连续性、提高用户体验以及系统整体性能。而移动性管理主要分为两大类:空闲状态下的移动性管理和连接状态下的移动性管理。空闲状态下的移动性管理主要通过小区选择/重选来

    05-06
  • 5G单验测试配合指导书,要核查些什么?

    一、 上下行速率问题 1、 找 RSRP 好点, 再看有无同频邻区干扰、 D1D2 干扰, 闭站解决。 2、 测试好点要求(5G 覆盖:-65db≥RSRP≥-75db, SINR≥15dbm);下行速率测试利用多径效应, 测试点尽量选择周边有墙壁、 高楼等位置, 多径效应不适用于上行速率

    05-07
  • 一文了解5G SA超级上行频谱

    1.1、背景 当前5G C-Band主要采用TDD组网,即上行和下行时分复用C-Band 频谱资源,一般采用8:2/7: 3/4: 1时隙配比,实际用于上行的时频资源有限,导致用户上行体验不佳。 超级上行通过将上行数据分时在Sub-3G频谱和C-Band频谱上发送,极大地增加了5G用户的上

    04-30
下载排行榜
更多
广告
X
广告