图说三极管,太全了!
微波与电磁兼容 2022-12-08

"晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件"


在电子元件家族中,三极管属于半导体主动元件中分立元件。


广义上,三极管有多种,常见如下图所示。


狭义上,三极管指双极型三极管,是最基础最通用的三极管。

本文所述的是狭义三极管,它有很多别称:

三极管的发明

 

晶体三极管出现之前是真空电子三极管在电子电路中以放大、开关功能控制电流。

真空电子管存在笨重、耗能、反应慢等缺点。

二战时,军事上急切需要一种稳定可靠、快速灵敏的电信号放大元件,研究成果在二战结束后获得。

早期,由于锗晶体较易获得,主要研制应用的是锗晶体三极管。硅晶体出现后,由于硅管生产工艺很高效,锗管逐渐被淘汰。

经半个世纪的发展,三极管种类繁多,形貌各异。  

小功率三极管一般为塑料包封;

大功率三极管一般为金属铁壳包封。

 

三极管核心结构

 

核心是“PN”结

是两个背对背的PN

可以是NPN组合,也或以是PNP组合

由于硅NPN型是当下三极管的主流,以下内容主要以硅NPN型三极管为例!

 

 

NPN型三极管结构示意图


NPN型三极管的制造流程

 


管芯结构切面图


工艺结构特点:

发射区高掺杂:为了便于发射结发射电子,发射区半导体掺浓度高于基区的掺杂浓度,且发射结的面积较小;

基区尺度很薄:3~30μm,掺杂浓度低;

集电结面积大:集电区与发射区为同一性质的掺杂半导体,但集电区的掺杂浓度要低,面积要大,便于收集电子。

  

三极管不是两个PN结的间单拼凑,两个二极管是组成不了一个三极管的!

工艺结构在半导体产业相当重要,PN结不同材料成份、尺寸、排布、掺杂浓度和几何结构,能制成各样各样的元件,包括IC

 

三极管电路符号

三极管电流控制原理示意图



三极管基本电路


外加电压使发射结正向偏置,集电结反向偏置。


//射电流关系:


IE  =  IB  + IC 

IC  =  β  *  IB


如果 IB = 0, 那么 IE = IC = 0



三极管特性曲线


输入特性曲线

-射极电压UCE为某特定值时,基极电流IB与基-射电压UBE的关系曲线。

UBER是三极管启动的临界电压,它会受集射极电压大小的影响,正常工作时,NPN硅管启动电压约为0.6V


UBEBER时,三极管高绝缘,UBE>UBER时,三极管才会启动;

 

UCE增大,特性曲线右移,但当UCE>1.0V后,特性曲线几乎不再移动。

 

输出特性曲线

基极电流IB一定时,集极IC与集-射电压UCE之间的关系曲线,是一组曲线。

IB=0, IC0 ,称为三极管处于截止状态,相当于开关断开;

IB>0, IB轻微的变化,会在IC上以几十甚至百多倍放大表现出来;

IB很大时IC变得很大,不能继续随IB的增大而增大,三极管失去放大功能,表现为开关导通。


三极管核心功能:

放大功能:小电流微量变化,在大电流上放大表现出来。 

开关功能:以小电流控制大电流的通断。


三极管的放大功能

 

IC   =   β  *  IB   (其中β≈ 10~400 )


例:当基极通电流IB=50μA时,集极电流:

IC=βIB=120*50μA=6000μA

微弱变化的电信号通过三极管放大成波幅度很大的电信号,如下图所示:


所以,三极管放大的是信号波幅,三极管并不能放大系统的能量


能放大多少?

哪要看三极管的放大倍数β值了!

 

首先β由三极管的材料和工艺结构决定:

如硅三极管β值常用范围为:30~200

锗三极管β值常用范围为:30~100

β值越大,漏电流越大,β值过大的三极管性能不稳定。

 

 

其次β会受信号频率和电流大小影响: 

信号频率在某一范围内,β值接近一常数,当频率越过某一数值后,β值会明显减少。

β值随集电极电流IC的变化而变化,IC为mA级别时β值较小。一般地,小功率管的放大倍数比大功率管的大。

 

三极管主要性能参数

 

三极管性能参数较多,有直流、交流和极限参数之分:

类型

参数项

符号

意义

直流参数

共射直流放大系数

β

无交变信号输入,共射电路集基电流的比值。β=IC/IB

共基直流放大系数

α

无交变信号输入,共基极电路集的比值。

-

反向电流

ICEO

基极开路,集-射极间反向电流,又称漏电流、穿透电流

集极

反向电流

ICBO


射极开路时,集电结反向电流(漏电流)

ICEO=βICBO

交流参数

共射交流放大系数

β

共射电路,集基电流变化量比值β=ΔIC/ΔIB

共基交流放大系数

α

共基电路,集射电流变化量比值:α=ΔIC/ΔIE

共射截止频率

ƒβ

β因频率升高3dB对应的频率

共基截止频率

ƒα

α因频率升高而下降3dB对应的频率

特征频率

ƒT

频率升高,β下降到1时对应的频率。

极限参数

集极最大电流

ICM

集极允许通过的最大电流。

集极最大功率

PCM

实际功率过大,三极管会烧坏。

-射极击穿电压

UCEO

基极开路时,集-射极耐电压值。

 

温度对三极管性能的影响

 

温度几乎影响三极管所有的参数,其中对以下三个参数影响最大。 

 

1)对放大倍数β的影响:

在基极输入电流IB不变的情况下,集极电流IC会因温度上升而急剧增大。 

 


2)对反向饱和电流(漏电流)ICEO的影响:

 ICEO是由少数载流子漂移运动形成的,它与环境温度关系很大,ICEO随温度上升会急剧增加。温度上升10℃,ICEO将增加一倍。

虽然常温下硅管的漏电流ICEO很小,但温度升高后,漏电流会高达几百微安以上。 

 

 

3)对发射结电压 UBE的影响:

温度上升1℃,UBE将下降约2.2mV。 

温度上升,β、IC将增大,UCE将下降,在电路设计时应考虑采取相应的措施,如远离热源、散热等,克服温度对三极管性能的影响。

 

三极管的分类

分类角度

种类

说明

从技术工艺

按材料

硅三极管 0.6V

锗三极管 0.3V

一般地:

锗管为PNP

硅管为NPN

按结构

PNP

NPN

按制造工艺

平面型

合金型

扩散型

高频管多为扩散型

低频管多为合金型

 

从性能

按频率

低频管 <3MHz

中频管  3~30(MHZ)

高频管 30~500  (MHZ)

超高频管  >500MHZ

按功率

小功率 PCM  <0.5W

中功率 0.5CM<1w

大功率 PCM  >1w

功率越大体积越大,散热要求越高。

功能

用途

放大管    开关管

高反压管  光电管

带阻尼管  数字管


从封装外形

按封装材料

金属封装  玻璃封装

陶瓷封装  塑料封装

薄膜封装

塑料封装为主流

金属封装成本较高

按封装形式

引线式 TO

贴片式 SOT

贴片式正逐步取代引线式。

 

三极管命名标识


不同的国家/地区对三极管型号命名方式不同。还有很多厂家使用自己的命名方式。

 

中国大陆三极管命名方式

3

D

D

12

X

2:二极管

3:三极管

APNP

BNPN

CPNP

DNPN

X:低频小功率
 G
:高频小功率
 D
:低频大功率
 A
:高频大功率

序号

规格号

例:3DD12X   NPN型低频大功率硅三极管

 

日本三极管型号命名方式

2

S

D

13

B

0:光电管

1:二极管

2:三极管

注册标识

APNP高频管
 B
PNP低频管
 C
NPN高频管
 D
NPN低频管

电子协会登记顺序

改进型号

例:2SC1895   高频NPN型三极管

 

美国电子工业协会(EIA)三极管命名方式

JANS

2

N

2904

A

JANTX:特军级
JANTXV
:超特军
JANS
:宇航级

(无):非军用品

1:二极管

2:三极管

n”:nPN    结元件

EIA注册标识

EIA登记顺序号

不同档别

例:JANS2N2904   宇航级三极管

 

欧洲三极管命名方式

B

C

208

A

A:锗管

B:硅管

C:低频小功率

D:低频大功率

F:高频小功率

L:高频大功率

登记顺序号

β的档别

例:BC208A   硅材料低频小功率三极管


三极管封装及管脚排列方式

 

关于封装:

三极管设计额定功率越大,其体积就越大,又由于封装技术的不断更新发展,所以三极管有多种多样的封装形式。

当前,塑料封装是三极管的主流封装形式,其中“TO”和“SOT”形式封装最为常见。


关于管脚排列:

不同品牌、不同封装的三极管管脚定义不完全一样的,一般地,有以上规律:

规律一:对中大功率三极管,集电极明显较粗大甚至以大面积金属电极相连,多处于基极和发射极之间;

规律二:对贴片三极管,面向标识时,左为基极,右为发射极,集电极在另一边;


基极 — B     集电极 — C     发射极 — E

 

三极管的选用原则


考虑三极管的性能极限,按“2/3”安全原则选择合适的性能参数。:


集极电流IC:


IC   <   2 / 3 *  ICM

ICM 集极最大允许电流

当 IC>ICM时,三极管β值减小,失去放大功能。


 

 集极功率PW:

PW  <  2 / 3  *  PCM

 PCM集极最大允许功率。

当P> PCM 三极管将烧坏。

 

-射反向电压UCE:

UCE   <   2 / 3  *  UBVCEO

UBVCEO基极开路时,-射反向击穿电压

/射极间电压UCE>UBVCEO时,三极管产生很大的集电极电流击穿,造成永久性损坏。


工作频率ƒ

ƒ  =  15%  *  ƒT

ƒT — 特征频率

随着工作频率的升高,三极管的放大能力将会下降,对应于β=1 时的频率ƒT叫作三极管的特征频率。

 


声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • RF
  • 射频
  • 通信
  • 无线
  • 对基站天馈线系统进行测试的方法

    无线基站发射信号和接收由移动台发射的信号都是通过天馈线系统来完成的,因此天馈线系统安装质量和运行情况的好坏将直接影响到通话质量、无线信号的覆盖和收发信机的工作状态。当发射天馈线发生故障时,发射信号将会产生损耗,从而影响基站的覆盖范围,若发射天馈线出现的故障较为严重时,基站会关闭与其相连的收发信机;当接收天馈线发生故障时,则其接收由移动台发射来的信号将会减弱,从而产生在移动台接收信号很强的基站范围内...

    6小时前
  • 克服多标准无线电基站发射机测试的挑战

    下一代基站发射机和接收机不仅采用单一无线制式的多载波(MC)技术,并且引入了在单一发射机路径中的多种制式,这些对带宽提出了更宽的要求。例如,GSM、W-CDMA 和LTE 多载波可以同时从一个多标准无线电(MSR)基站单元进行传输。蜂窝网络可以支持多种制式,这对于降低基站规模和成本而言十分重要。鉴于此,MSR基站将会从当前已部署的2/3G无线制式顺利而稳定地过渡到3.9G(例如LTE)、甚至是4G...

    6小时前
  • 基于HARQ的TD-LTE基站性能测试方案

    0 引言 LTE(Long Term Evolution长期演进)技术是第三代移动通信演进的主要方向。作为一种先进的技术,LTE系统在提高峰值数据速率、小区边缘速率、频谱利用率、控制面和用户面时延以及降低运营和建网成本等方面拥有巨大的优势。同时,LTE系统与现有系统(2G/2.5G/3G)能够共存,并且实现平滑演进。 LTE系统按照双工方式分为频分双工(FDD)和时分双工(TDD)两种。其中LTE...

    6小时前
  • 使用MDO4000和RSAVu测试无线设计

    引言 在把RF技术整合到设计中时,嵌入式设计人员发现有许多新问题需要解决:(系统中的蓝牙芯片是否以预期方式发送)?802.11芯片组在运行过程中是否正确编程?怎样追踪发射机与接收机之间的交互过程? 在这些问题上,混合信号示波器(MSO)显得力不从心,因为它只适合处理模拟信号和数字信号,而不能高效测量RF信号。另一方面,频谱分析仪很难整合到处理系统级问题的测量环境中,因为在这种环境下,与系统其它部分...

    6小时前
  • 集成ZigBee 的射频实现与测试

    在设计嵌入式ZigBee(或其它基于IEEE802.15.4的协议)射频解决方案时,在最终产品中的集成度方面有一些折衷的考虑。挑战在于如何平衡集成度和开发成本对最终应用性能的要求。由于低成本无线技术在许多电子产品应用中激增,简化ZigBee模块性能的验证和检验非常重要。本应用指南展示了泰克MDO4000系列示波器在验证和检验ZigBee无线模块集成度方面的应用及简便性。 图1.泰克MDO4000...

    6小时前
  • 射频通过式功率计的应用

    通过式功率计的历史 早在1952年,BIRD公司的创始人J. Raymond Bird发明了通过式功率计原理——Thruline®,从此,通过式功率测量法成为射频功率测量的工业标准一直至今。通过式功率测量法的原理如下: 图1、通过式功率测量法 通过式射频功率计的典型代表产品是BIRD公司的43型(见图3),它实际上是一种信号激励装置,采用了一个无源的二极管射频传感器。在同轴线的一侧装有一个定向的...

    6小时前
  • 利用N934xC/B手持式频谱分析仪验证和定位干扰的步骤

    无线通信系统时常会共享或重复使用频谱。随之而来的结果就是,无线系统很容易受到干扰。造成干扰的原因有许多,在此我们将主要讨论由正常工作或发生故障的无线系统所引发的干扰。 无线通信系统内出现的干扰通常来自以下来源: 信号之间的侵扰,运行中的系统组件 (例如发生故障的发射机等),或自身对灵敏设备产生干扰的通信系统。 由于所有无线通信系统均容易受到干扰的影响,因此对无线系统中或周围频谱进行快速而准确的测量...

    6小时前
  • 以太网硬件电路如何在PCB上实现

    我们现今使用的网络接口均为以太网接口,目前大部分处理器都支持以太网口。目前以太网按照速率主要包括10M、10/100M、1000M三种接口,10M应用已经很少,

    昨天
  • 支持4个双天线DUT的非信令2G/3G/LTE无线综测解决方案

    智能手机和平板电脑的旺盛市场需求迫使生产线寻求更大吞吐量的无线综测解决方案,专攻生产线测试解决方案的Litepoint公司去年6月14日应时而动,推出了同时支持1、4和8部DUT的2G/3G/LTE智能手机和平板电脑无线综测仪IQxstream。 三个月之后,安捷伦生产线测试事业部也宣布推出同时支持4个双天线和8个单天线智能手机或平板电脑DUT的非信令2G/3G/LTE无线综测解决方案(E6607...

    01-11
  • 车载GPS接收机测试

    车载 GPS 导航系统是汽车电子的重要应用,随着汽车进入普通家庭并迅速普及,对车载 GPS 的需求也在急速增长。车载 GPS 导航系统由车载 GPS 接收机和导航软件组成,其中车载 GPS 接收机的性能指标直接影响到导航应用的用户体验,是影响产品性能的关键部分。目前车载 GPS 接收机测试并没有统一的标准,与行业大量应用的手机 GPS 测试相比,需要增加面向汽车应用的测试要求,形成更加全面的符合汽...

    01-11
  • PXA实时频谱分析 应对多制式、高速率通信系统表征和故障诊断

    在航空航天、国防和无线通信等领域中,不断涌现出来的诸多挑战致使系统表征和故障诊断变得更加困难。以雷达和电子战(EW)系统为例,这些系统正变得动态范围更大,运动速度更快,覆盖战场上的更大空间。这种多制式、高速率通信系统的扩展提升了互操作性问题的出现概率。 随着信号变得更加复杂和灵敏,无间隙测量技术——实时频谱分析和时间捕获——逐步获得主流应用的认可。Agilent PXA 信号分析仪更进一步将这些新...

    01-11
  • MIMO波束赋形及其对TD-LTE测试的影响

    1  波束赋形基础知识     “波束赋形”一词有时会被滥用,从而引起混淆。从技术上来说,波束赋形和波束导向一样简单,即两个或更多的天线以受控的延迟或相位偏移来发射信号,从而创造出定向的建设性干涉波瓣(见图1)。 图1 简单波束导向创建的波瓣     TD-LTE系统中所用的波束赋形是一个相对更加复杂的命题,部分原因是终端设备具有移动的特性。一种称为Eigen波束赋形的技术会使用关于RF信道的信...

    01-11
下载排行榜
更多
广告