多通道相参矢量信号产生和分析系统
微波射频网 2023-02-01

1、应用要求:

现在很多电子系统采用多通道相参技术,典型的应用包含无线通信系统中MIMO技术和相控阵雷达系统。这些系统都通过采用多通道相参技术来提高系统的工作性能,图1为典型的多通道电子系统的应用。例如MIMO提供通过多通道传输来提高接收机信噪比,改善复杂电磁环境下高速数字通信的质量。MIMO技术充分利用多天线特性来抑制信道衰落,从而有效克服多径衰落、干扰等影响通信质量的主要因素,提高信号的链路性能;并能在不增加带宽的情况下,成倍提高通信系统的容量和频谱利用率,因而MIMO技术已成为下一代无线局域网发展的趋势。与发射机相比,MIMO接收机的结构更为复杂,它包含了诸如分集接收模块、同步估计与补偿模块、信道估计与均衡模块等决定系统性能的组成部分,也正是MIMO系统能否正常工作的关键。因此对MIMO接收机的测试是MIMO系统完整测试过程中不可或缺且至关重要的环节。而相控阵雷达系统通过相参多通道来提高电磁波束的扫描速度,并利用多波束技术来实现多功能或多用户应用。这些相参电子系统包含多个天线单元,通过信号处理、控制,达到对天线的波束合成、发射模式的自动优化功能。为了实现该功能,每个天线单元发射的信号必须满足相位相干的要求。

图1:典型的多通道电子系统应用

多通道相参测试验证系统的实现提出了前所未有的挑战,主要的技术难题包含:
1、在发射端,要求多台信号源模拟的多路信号之间必须真正实现相位相干和时间相关。
2、在接收端,必须确保多路接收通道之间的相干接收以及为通信信号提供精确的解调分析,以确定信号的质量。
3 、多路相参信号在合成和分析的算法实现。信号处理软件需要具备信道恢复等处理能力。

2、多通道矢量信号合成和分析系统技术方案

多通道验证测试系统包含多通道相参信号合成和多通道相参信号分析仪表。系统的组成框图如图2。
1:利用ADS,Matlab, Signal Studio等软件完成复杂调制信号波形建立,按照合成信号要求进行雷达脉冲调制信号计算,数字调制信号基带编码,时空编码等。
2:利用E4438C信号源或E8267D信号源构建多路相位相参矢量调制信号系统,输出的各路信号间时间,相位和功率关系可控。
3:对多路宽带接收信号进行相参处理,包含宽带相参下变频处理和ADC采样处理。
4:利用ADS,89601A矢量分析软件对多路调制信号进行完整矢量分析,包含:时域分析,频域分析,解调分析,时空解码处理等。

图2:4通道矢量信号合成分析系统

2.1多路相参矢量调制信号合成:

多路相参信号的合成流程,首先利用ADS、或Matlab仿真软件负责完成多路相参信号的模拟和仿真,这些软件支持完整的MIMO信号合成和雷达信号实现,能完成两路脉冲调制信号的参数控制和MIMO信号时空编码模块。仿真计算得到的信号数据通过GPIB或Lan下载给MXG矢量射频信号源或E8267D微波矢量信号发生器, 矢量信号源完成信号波形数据存储,DAC处理和IQ调制。MXG和E8267D具备基带相参合成和相参本振信号合成能力,从而保证输出的调制信号的相参性。信号源的矢量调制带宽能达到300MHz。

多路相参矢量信号合成的关键是保证多路信号间的稳定相位关系。对于矢量信号源采用的IQ调制技术,需要在相参信号合成中保证载波信号和基带信号的相参性。Agilent E4438C/E8267D/N5182A矢量信号源都具备本振相参和基带DAC处理相参的控制能力。从而保证输出矢量调制信号的相参性。另外多路矢量信号合成的重要功能要求是能对多路相参信号的时间相位关系进行精确控制,信号间时间相位关系的控制是通过矢量源间基带信号合成的触发控制来实现的。图3为多路矢量信号源间时间关系控制的设置,主源输出射频调制信号的同时,会从Event1端口输出同步控制信号,该信号用于从信号源的基带外触发控制,可以通过设置从信号源的触发延迟来改变两台信号源间输出信号的时间关系。使用E8267D矢量信号源,时间控制的分辨率为10ns,使用N8241A完成基带信号合成,时间控制分辨率可以达到0.8ns。 对于基带信号的波形建立,可以使用ADS,Matlab,Agilent Signal studio等波形建立软件完成。

图3:多台相参信号源输出时间关系控制

2.2 多通道相参信号分析

多通道相参信号分析系统需要保证多路信号处理过程中硬件设备的相参性,并提供完整的多路信号间参数的分析能力。
Agilent宽带相参接收系统组成框图如图4所示,硬件包含N5280A宽带下变频器和DSA90804A深存储数字示波器,多路信号的分析处理由ADS软件和89601A矢量分析软件完成。N5280A工作频率范围为26.5GHz,处理带宽可以达到1GHz,多路混频通道的本振采用分路技术来实现,从而保证多路变频处理的相参性。DSA90804A示波器是4通道数字示波器,采样率为40G,分析带宽为8GHz,该仪表完成对四路中频信号进行同步ADC采样。示波器采样的信号数据又ADS软件89601A矢量分析软件完成。

图4:4通道相参分析系统组成

对两路信号进行幅度和时间相位关系的比较。对于正弦波,方波,脉冲调制等信号进行时间差分析可以利用示波器直接完成。DSA90804A示波器采样速率可达40Gsa/s,可以保证时域参数测试的精度。对于多路信号间相互关系参数的测试,可以使用89601A矢量分析软件来完成,89601A矢量分析软件支持多通道信号分析测试,能分别对每路信号进行频谱测试,时域测试和解调分析,还能测试两路信号间的功率和相位关系。图5为89601A完成对两路脉冲调制信号的频域,时域和功率相位差参数的测试显示结果。

图5:89601A完成对两路脉冲调制信号的分析

对于多路复杂矢量调制的时间关系分析,可以通过相关运算来确定任意信号间的时间关系。互相关处理功能特别适合对多路类似噪声的数字调制信号进行时间关系分析,因为如果通过普通时域分析方法,很难确定两路随机信号时间比较的触发控制点位置,而使用互相关运算能反映两路相参信号间的时间关系,通过两路相参信号的互相关运算,在信号时延差的位置上会出现相关数值的峰值,图6为89601A矢量分析软件具备互相关处理功能。

图6:互相关函数和89601A的互相关分析功能

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • RF
  • 射频
  • 通信
  • 无线
  • 射频同轴转接头全面介绍

    作为一个射频工程师,测试人员,在日常的工作过程中,接触最多的除了测试仪表,校准件,连接线缆之外,就是各种不同设备之间的转接头了。我们在维修的过程中,发现有比较多的仪器的损坏,或者是测试指标不稳定,是由于转接头的损坏造成的,而且有些接头的连接

    9小时前
  • 5条定律帮你搞定共模干扰

    经常在实际操作中,对系统损伤最大的都是低频的共模干扰,譬如大功率电机、断路器或开关,短路,雷击感应等,这些类型大都是外来的共模信号,其脉宽在数百us到s之间,周期最长也是数秒,这样的脉冲持续引起对地的高电压波动,从而损伤系统。但是对于高频共模

    9小时前
  • 浅析进程间通信的几种方式(含实例源码)

    一.为什么进程间需要通信?1).数据传输一个进程需要将它的数据发送给另一个进程;2).资源共享多个进程之间共

    10小时前
  • Geinus I/O总线的特性、网络实现及应用分析

    1、引言geinusi/o总线是美国gefanuc自动化公司推出的一种工业控制总线,它既是i/o总线又是通信网络,非常适合于大量i/o处理和数据传输。可作为一个

    03-24
  • NorFlash与NandFlash区别对比

    FLASH存储器又称闪存,主要有两种:NorFlash和NandFlash。在实际开发中,设计者可以根据产品需求来进行闪存的合理选择。

    03-24
  • 到底什么是SAW?

    大家好,我是小木匠,今天学点什么呢 上周我们一起学习了声波的基础知识:《声波和电磁波到底有什么区别?》,我们在文章中简单介绍了声波的原理,频率,波长以及波速。同时引出了声表面波滤波器SAW的工作原理。我们简单再回顾一下:电信号传输到换能器IDT上

    03-24
  • 一文掌握无线通信信号传输模型

    5G及无线技术专栏主要介绍5G NR、LTE、WiFi等主流无线通信技术,由业界一线工程师执笔,结合理论与实践,既有标准解读,又涵盖链路仿真与测试,是不可多得的进阶学习平台。如有想看到的内容或技术问题,可以在文尾写下留言。 1. 概述 在移动通信网的规划阶段

    03-24
  • MOSFET参数弄不懂?看这篇就够了!

    01绝对最大额定值02电参数

    03-24
  • UWB之TWR,TDOA,PDOA算法模型及优缺点

    目前UWB的主流算法是TWR,TDOA,PDOA。三者各有优缺点,今天就来简单介绍一下:1.从监测站将同一时

    03-24
  • 载波聚合将如何进化?直面未来,它定下这5个小目标

    2011 年,3GPP在10版标准中对LTE载波聚合(CA)框架进行了标准化,允许最多5载波的 CA。11版对基本CA框架进行了扩展,启用了不同上行链路和下行链路配置下的带间时分双工 (TDD)。此后

    03-23
  • 电信业2017年面临大挑战,跨市场并购成为趋势

    据国外媒体报道,受数字经济增长和不断变化的消费者需求推动,电信行业正面临着前所未见的网络服务需求。关于新市场(例如物联网(IoT)应用)的预测增长令人振奋。2016年,仅英国的移动数据流量便大增64%

    03-23
下载排行榜
更多
广告