么如何设计出高效的可编程数字电源
mouser 2021-04-27

目前数字电源在系统开发中所占的比例正在逐渐增长,越来越受到广大电源管理开发商的青睐。而且在如今这个“快充和无线充电”的年代,数字电源更是扮演了举足轻重的角色。那么如何设计出高效的可编程数字电源,又是如何实现更宽输出电压要求的?针对这些问题,在日前举办的第17届电源管理论坛上,PI的高级现场应用工程师何平给大家做出了精彩的技术分享。

“”
“【图为何平在深入讲解PI的离线式反激电源的数字控制解决方案】”【图为何平在深入讲解PI的离线式反激电源的数字控制解决方案】

在演讲中,何平从以下几方面全面展述离线式反激电源的数字控制。首先讲述了满足宽输出电压要求的USB PD电源,然后进一步阐述了改进的反激式拓扑可提供高性价比的满足DoE(6)效率要求的高效解决方案。最后详细讲解了宽输出电压范围反激式电源在设计中如何优化、具体挑战以及具备I2C接口的高集成度的数字控制方案。

任何优秀的设计方案,都离不开其高效性以及可靠性。大家都知道,结构越是简单,其可靠性将会越高,PI推出的这种变频反激式拓扑方案也是一样,由于其高度集成,因而整体方案的元件数目很少。那么高效性呢?此方案采用的变频技术可在整个负载范围内始终保持高效率,而更高的效率则意味着更低的热量耗散。此外对于宽输出电压的应用来说,电源不可避免地会工作于CCM或DCM工作方式,为了提高效率,方案中采用的同步整流及准谐振的开关方式,可以保证各种输出条件下均能实现高效。

提升效率是电源设计的一大永恒话题。并且不管输入电压和负载如何变化,电源都始终需要维持平稳的高效率。随着PD电源/快充电源的出现,电源的输出电压需要根据负载的应用要求而改变,因而是否能在各种输出条件下均能满足国际能效标准的要求对设计者来讲也是一项不小的挑战。另一方面,效率提升对散热设计也具有积极意义。通过降低适配器的散热要求,工程师便可实现对成本、尺寸和重量等各项指标的优化,从而实现高功率密度、高可靠性的电源设计。那么PI的设计方案具体是如何提高效率和可靠性,我们来看看。

1、SR开关时序的精确控制可提高效率和可靠性

精确的初级开关管关断与次级SR开通时序可降低同步整流管体二极管的导通时间,从而提高效率。而次级整流管关断后再由次级侧发送初级侧功率开关管开通指令的时序控制方式可以保证在CCM工作方式下同步整流的高可靠性。

“【图为:SR开关时序的精确控制】”【图为:SR开关时序的精确控制】

2、EMI及音频噪声的优化可降低系统成本

变压器屏蔽绕组可降低共模噪声,频率调制则可降低EMI扫描频谱中的峰值数值,从而可以降低EMI滤波元件的成本。在轻载下一般都是采用降低工作频率的方法来提高轻载效率,但在某一负载下,开关频率会降至20kHz以下并进入音频噪声范围。尤其当开关频率接近变压器本身的共振频率点时会产生比较大的音频噪音。为改善这种情况,PI所采用的先进的状态控制器可以防止电源工作于7至12kHz的开关频率下,而这一频段是大多数变压器产生噪音最大的工作频段。此外,为进一步降低音频噪音,在变压器的设计时,当工作频率<0kHz时,会确保磁通密度BAC<120mT。

“【图为:EMI及音频噪声的优化】”【图为:EMI及音频噪声的优化】

3、采用I2C接口

除了以上设计优点,PI的方案还采用了集成的I2C接口,通过这个接口与外部微处理器进行通讯,通过软件对电源的输出电压及电流进行精确的动态阶跃控制——电压阶跃步长为10mV,电流阶跃步长为50mA——实现数字可编程的功率变换。这个带来的好处是支持USB PD3.0子集中的PPS,可以更精确的控制输出的电压档位。除了对输出特性进行外部编程控制以外,电源的各种保护特性也可进行人为个性化设定。而所有这些强大的设定功能只使用简单的外部微控制器即可实现,从而省去了复杂的针对不同协议的接口电路。整个系统具有安全、可靠且体积小的特点,且可实现远程控制和监视。

“【图为:采用I2C接口电路】”【图为:采用I2C接口电路】

何平最后总结时说到:PI设计的解决方案不仅可以满足宽输出电压要求的USB PD电源,经过其改进的反激式拓扑亦可提供高性价比且满足DoE(6)效率要求。集成的I2C接口安全、可靠且体积小,还可实现远程控制和监控,而且可支持使用更简单的外部微控制器,省去复杂的协议接口电路。

“”
“【图为第17届电源管理论坛“快充和无线充电”论坛会场】”【图为第17届电源管理论坛“快充和无线充电”论坛会场】

Chris提出:面对快速增长的快充和无线充电市场,PI更关心如何用产品价值帮助客户。产品的成本包括材料成本 生产成本,PI高度集成化的产品在批量化生产时会极大地提高生产效率,帮助客户降低生产成本;此外PI产品的高可靠性可以将产品的市场返修降到最低,降低运营成本。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 电源
  • DC
  • AC
  • 稳压
  • 开关电源常见的基本拓扑结构

    1、基本名词     常见的基本拓扑结构     ■Buck降压     ■Boost升压     ■Buck-Boost降压-升压     ■Flyback反激     ■Forward正激     ■Two-Transistor Forward双晶体管正激     ■Push-Pull推挽     ■Half Bridge半桥     ■Full Bridge全桥     ■S

    05-10
  • LLC开关电源计算过程推导

     免费申请开发板  推荐阅读: 点击下方『面包板社区』卡片关注我们, 每天学点电子技术干货 ▲ 点击关注,后台回复"关键词",领取300 G学习资料包!  内容合作 | 视频、课程合作 | 开发板合作| 转载开白  请联系小助手微信:15889572951(微信同号) 点击阅读

    05-06
  • 移相全桥电源12种工作模态

    在早期的大功率电源(输出功率大于1KW)应用中,硬开关全桥(Full-Bridge)拓扑是应用最为广泛的一种,其特点是开关频率固定,开关管承受的电压与电流应力小,便于控制,特别是适合于低压大电流,以及输出电压与电流变化较大的场合。但受制于开关器件的损耗,无

    05-07
  • 大牛总结:六种DC/DC变换电路分析比较

    基本原理 直流-直流降压变换器(BUCK变换器) 直流-直流升压变换器(BOOST变换器) 直流降压升压变换器(BUCK-BOOST变换器) 直流升压降压变换器(CUK变换器) 两象限/四象限直流-直流变换器 单端正激变换器 单端反激变换器 *本文系网络转载,版权归原作者所有,如有

    04-29
  • 肖特基二极管有什么特别之处?

    注| 文末留言有福利 提到低功耗、大电流、超高速半导体器件,很多工程师同学肯定能首先想到肖特基二极管(SBD)。 但是你真的会用肖特基二极管吗?和其他的二极管比起来,肖特基二极管又有什么特别之处呢?下面一起来 划重点 吧! 0 1 肖特基二极管的关键参数

    04-27
  • 分析实例:了解DC/DC变换器一些常见的问题

    先介绍几个应用实例从这些应用实例中,了解如何分析DC/DC变换器设计中的问题及解决方法,从常见的buck电路,在平时设计和调试过程中,从DCDC变换器性能,功能设置,控制环设计,板子布局和测试技巧,通过这些分析实例能了解DCDC电路中在试机阶段快速解决掉一

    04-26
  • 图解BUCK电路及PCB布局

    Buck架构: 当开关闭合的时候: 当开关断开的时候: 根据伏秒平衡定理可得: (Vin-Vout)*DT=Vout(1-D)T===>Vin/Vout=D<1 在实际DCDC应用中: 当Q1闭合的时候,在图1-a中,红线示出了当开关元件Q1导通时转换器中的主电流流动。CBYPASS是高频的去耦电容器,CI

    04-25
  • 开关电源公式与对应电路

    1 Buck 变换器的功率器件设计公式 (1):Buck 变换器的电路图: (2):Buck 变换器的主要稳态规格: (3):功率器件的稳态应力: -- 有源开关 S: -- 无源开关 D: 上述公式是稳态工作时,功率器件上的电压、电流应力。选择功率器件时,其电压耐量可放一个

    04-23
  • 为什么PWM驱动芯片用图腾柱?

    推挽电路的应用非常广泛,比如单片机的推挽模式输出,PWM控制器输出,桥式驱动电路等。推挽的英文单词:Push-Pull,顾名思义就是推-拉的意思。所以推挽电路又叫推拉式电路。 图1:锯木头 推挽电路有很多种,根据用法的不同有所差异,但其本质都是功率放大,增

    04-23
  • 开关电源的输入滤波器(共模、差模)

    开关电源的输入滤波器 开关电源的输入滤波器是针对共模噪声和差模噪声,分别采用适合不同噪声特性的滤波器。 差模滤波器 共模滤波器采用电容器、电感、铁氧体磁珠和电阻等。图例中是使用了LC的π型滤波器。各部件对噪声具有如下作用: 电容器:将噪声电流旁路

    04-21
  • 入门级电源工程师常遇到的问题

    先上图 一些入门级的电源工程师常遇到这样一个问题,在电路图中的Vcc接芯片的地方加入了一个12V左右稳压管。目的是为了保证芯片的电压上限,意图很明确,稳压管能够保护芯片不会因为电压过高问题而烧毁。看上去没啥毛病,但实际上很危险。 我们一起来初步分析

    04-19
  • 电源控制环路的设计计算

    引言 作为工程师,每天接触的是电源的设计工程师,发现不管是电源的老手,高手,新手,几乎对控制环路的设计一筹莫展,基本上靠实验.靠实验当然是可以的,但出问题时往往无从下手,在这里我想以反激电源为例子(在所有拓扑中环路是最难的,由于RHZ 的存在),大概说一下怎

    04-16
下载排行榜
更多
广告
X
广告