3种拓扑结构介绍:降压、升压和降压-升压
2021-04-06

在本篇文章中,我将从不同方面深入介绍降压、升压和降压-升压拓扑结构。

1、降压转换器

图1是非同步降压转换器的原理图。降压转换器将其输入电压降低为较低的输出电压。当开关Q1导通时,能量转移到输出端。

图1:非同步降压转换器原理图

公式1计算占空比:

公式2计算最大金属氧化物半导体场效应晶体管(MOSFET)应力:

公式3给出了最大二极管应力:

其中Vin是输入电压,Vout是输出电压,Vf是二极管正向电压。

与线性稳压器或低压差稳压器(LDO)相比,输入电压和输出电压之间的差异越大,降压转换器的效率就越高。

尽管降压转换器在输入端具有脉冲电流,但由于的电感 - 电容(LC)滤波器位于转换器的输出端,输出电流是连续的。结果,与输出端的纹波相比,反射到输入端的电压纹波将会更大。

对于占空比小且输出电流大于3A的降压转换器,建议使用同步整流器。如果您的电源需要大于30A的输出电流,建议使用多相或交错功率级,因为这样可以最大限度地减少组件的应力,在多个功率级之间分散产生的热量,并减少转换器输入端的反射纹波。

使用N-FET时会造成占空比受限,因为自举电容需要在每个开关循环进行再充电。在这种情况下,最大占空比在95-99%的范围内。

降压转换器通常具有良好的动态特性,因为它们为正向拓扑结构。可实现的带宽取决于误差放大器的质量和所选择的开关频率。

图2至图7显示了非同步降压转换器中FET、二极管和电感器在连续导通模式(CCM)下的电压和电流波形。

2、升压转换器

升压转换器将其输入电压升高为更大的输出电压。当开关Q1不导通时,能量转移到输出端。图8是非同步升压转换器的原理图。

图8:非同步升压转换器原理图

公式4计算占空比:

公式5计算最大MOSFET应力:

公式6给出了最大二极管应力:

其中Vin是输入电压,Vout是输出电压,Vf是二极管正向电压。

使用升压转换器,可以看到脉冲输出电流,因为LC滤波器位于输入端。因此,输入电流是连续的,输出电压纹波大于输入电压纹波。

在设计升压转换器时,重要的是要知道,即使转换器不在进行切换,也会有从输入到输出的永久连接。必须采取预防措施,以防输出端可能发生的短路事件。

对于大于4A的输出电流,应使用同步整流器替换二极管。如果电源需要提供大于10A的输出电流,强烈建议采用多相或交错功率级方式。

当在CCM模式下工作时,升压转换器的动态特性由于其传递函数的右半平面零点(RHPZ)而受到限制。由于RHPZ无法补偿,所以可实现的带宽通常将小于RHPZ频率的五分之一到十分之一。请参见公式7:

其中Vout是输出电压,D是占空比,Iout是输出电流,L1是升压转换器的电感。

图9至图14显示了非同步升压转换器中FET、二极管和电感器在CCM模式下的电压和电流波形。

3、降压-升压转换器

降压-升压转换器是降压和升压功率级的组合,共享相同的电感器。参见图15。

图15:双开关降压-升压转换器原理图

降压-升压拓扑结构很实用,因为输入电压可以比输出电压更小、更大或相同,而需要输出功率大于50W。

对于小于50W的输出功率,单端初级电感转换器(SEPIC)是一种更具成本效益的选择,因为它使用较少的组件。

当输入电压大于输出电压时,降压-升压转换器以降压模式工作;输入电压小于输出电压时,在升压模式下工作。当转换器在输入电压处于输出电压范围内的传输区域中工作时,处理这些情况有两个概念:或是降压和升压级同时有效,或是开关循环在降压和升压级之间交替,每个通常以正常开关频率的一半运行。第二个概念可以在输出端引起次谐波噪声,而与常规降压或升压工作相比,输出电压精度可能不那么精确,但与第一个概念相比,转换器将更加有效。

降压-升压拓扑结构在输入和输出端都有脉冲电流,因为任一方向都没有LC滤波器。

对于降压-升压转换器,可以分别使用降压和升压功率级计算。

具有两个开关的降压-升压转换器适用于50W至100W之间的功率范围(如LM5118),同步整流功率可达400W(与LM5175相同)。建议使用与未组合降压和升压功率级相同的电流限制的同步整流器。

您需要为升压级设计降压-升压转换器的补偿网络,因为RHPZ会限制稳压器带宽。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 电源
  • DC
  • AC
  • 稳压
  • 电源控制环路的设计计算

    引言 作为工程师,每天接触的是电源的设计工程师,发现不管是电源的老手,高手,新手,几乎对控制环路的设计一筹莫展,基本上靠实验.靠实验当然是可以的,但出问题时往往无从下手,在这里我想以反激电源为例子(在所有拓扑中环路是最难的,由于RHZ 的存在),大概说一下怎

    昨天
  • 电源及开关电源的相关基本电路基础(PPT)

    推荐阅读: 点击下方『面包板社区』卡片关注我们, 每天学点电子技术干货 ▲ 点击关注,后台回复"关键词",领取300 G学习资料包!  内容合作 | 视频、课程合作 | 开发板合作| 转载开白  请联系小助手微信:15889572951(微信同号) 点击阅读原文,下载《基本

    04-12
  • 同步整流和非同步整流到底有什么差别?

    开关电源是通过功率管打开时给电感充电,电感储能;功率管断开时,电感释放能量,从而实现电压变换。 在功率管断开时,电感释放能量需要电流回路,续流元器件的选用不同,就会涉及到不同的整流方式,即同步整流和非同步整流。 那么同步整流和非同步整流到底有

    04-12
  • PWM波到底是什么,TA隐藏着什么思想?

    PWM有非常广泛的应用,比如直流电机的无极调速,开关电源、逆变器等等。个人认为,要充分理解或掌握模拟电路、且有所突破,很有必要吃透这三个知识点: PWM 电感 纹波。 PWM是一种技术手段,PWM波是在这种技术手段控制下的脉冲波。 如图1所示,这种比喻很形象

    04-09
  • 10类开关电源电路损耗分析

    0 1 输入部分损耗 1、脉冲电流造成的共模电感T的内阻损耗加大 适当设计共模电感,包括线径和匝数 2、放电电阻上的损耗 在符合安规的前提下加大放电电阻的组织 3、热敏电阻上的损耗 在符合其他指标的前提下减小热敏电阻的阻值 0 2 启动损耗 普通的启动方法,开

    04-08
  • 阻容降压的精确计算

    很多人对阻容降压都比较了解,但是对阻容降压没有多少好感; 因为: ①设计参数通常和实际测试相差较远;(是因为思路不对,下面细讲) ②阻容降压因为输入输出没有隔离而比较危险。(其实绝缘和接地做好了也是非常安全的) 但是在小功率方面的优点是非常突出

    04-08
  • H桥电路换上了IGBT管子,驱动+保护

    这几天沉下心来专门给逆变器的后级,也就是大家熟悉的H桥电路换上了IGBT管子,用来深入了解相关的特性。 大家都知道,IGBT单管相当的脆弱,同样电流容量的IGBT单管,比同样电流容量的MOSFET脆弱多了,也就是说,在逆变H桥里头,MOSFET上去没有问题,但是IGBT

    03-30
  • 电源隔离是个大问题(常见拓扑)

    作者:电子阔少  来源:面包板社区 本文原创,转载请联系授权! 关于电源隔离的一些基本知识 ,有好多专家和大咖或专业电源书籍,已经有很多人介绍了。 本文从认识反激电源FlyBuck拓扑隔离 ,简单地对具体的电源的隔离做一些介绍 那么这里大家看到是一个典型

    03-30
  • 变压器设计有哪些类型?怎样选择变压器?

    1、什么叫变压器? 在交流电路中,将电压升高或降低的设备叫变压器,变压器能把任一数值的电压转变成频率相同的我们所需的电压值,以满足电能的输送,分配和使用要求。 例如发电厂发出来的电,电压等级较低,必须把电压升高才能输送到较远的用电区,用电区又必

    03-29
  • 正弦波、波整流、半波整流的相关计算

    一、基本公式 对于一个时间函数的正弦波: 即函数是u=F(t),注意u≠sin(t),F≠sin。 但是它是一个正弦波,故u=sin(£),£与t存在关系 即:u=F(t)=sin(£),£与t存在关系,£的单位是角度,t的单位是秒。sin只能对“角度”,不能对“秒”。“秒”要转换

    03-29
  • 动图看懂半波整流电路

    电子电路的理论很抽象,所以多看电子电路的信号波形,对掌握理论知识非常有帮助。 让我们通过形象的电路信号波形,直观地了解电路的世界! 半波整流电路 半波整流电路,电路图很简单,通过一个二极管实现半波整流。其中1kΩ的电阻是负载。各点波形如下: 半波

    03-30
  • 开关电源常见的基本拓扑结构

    1、基本名词     常见的基本拓扑结构     ■Buck降压     ■Boost升压     ■Buck-Boost降压-升压     ■Flyback反激     ■Forward正激     ■Two-Transistor Forward双晶体管正激     ■Push-Pull推挽     ■Half Bridge半桥     ■Full Bridge全桥     ■S

    03-25
下载排行榜
更多
广告
X
广告