电平转换常见方法的汇总比较
2021-01-19

作为一名电子设计的硬件工程师,电平转换是每个人都必须面对的的话题,主芯片引脚使用的1.2V、1.8V、3.3V等,连接外部接口芯片使用的1.8V、3.3V、5V等,由于电平不匹配就必须进行电平转换。每个工程师都有自己的 一套转换方案,今天我们将5种电平转换的方法进行汇总,并且总结各种的优劣势,避免设计过程踩坑。


一、电平转换方法


5种电平转换方法分别是,下午我们会从速率、驱动能力、漏电流、成本、通道数五个维度评价。:

1) 晶体管电平转换方法;

2) 专用电平转换芯片;

3) 限流电阻电平转换方法;

4) 电阻分压电平转换方法;

5) 二极管电平转换方法;


1、使用晶体管转换电平

如下图1,使用2个NPN三极管,将输入信号电平VL和转换为输出电平VH,使用2个三极管的目的是将输入和输出信号同相,如果可以接受反相,使用一个三极管也可以。

图1;晶体管进行电平转换


优势:

1) 便宜:三极管容易常见并且容易采购,价格低廉(批量几分钱一个)。

2) 驱动能力强:驱动能力取决于三极管,可以做到数十mA;

3) 漏电流低:In  和OUT两者之间的漏电流较小(uA级别),几乎可以忽略不计。

劣势:

1) 速度:两级三极管属于电流驱动型,加上电路和寄生电容,转换后的波形不是十分理想。一般只能用于100K以内的信号转换。

2) 器件多:同相转换需要2个三极管以及配套的电阻,多路转换时占用空间较多。


2、使用专用电平芯片转换电平

如下图2,使用专用的电平转换芯片,分别给输入和输出信号提供不同的电压,转换由芯片内部完成,例如MCP2551/3221等电平转换芯片。专用芯片是最可靠的电平转换方案,5个优点里面占据了4个,除了成本。


图2;专用电平转换芯片


优势:

1) 驱动能力强:专用芯片的输出一般都使用了CMOS工艺,输出驱动10mA不在话下。

2) 漏电流几乎为0:内部是一些列的放大、比较器,输入阻抗非常高,一般都达到数百K。漏电流基本都是nA级别的。

3) 路数较多:专用芯片针对不同的应用,从2路到数十路都有,十分适合对面积要求高的场合。

4) 速率高:专用芯片由于集成度较高,工艺较高,,速率从数百K到数百M的频率都可以做。

劣势:

1) 成本:专用芯片集众多优势于一身,就是成本是最大的劣势,一个普通的数百K速率的4通道电平转换芯片,价格至少要1元人民币医生,如果使用三极管做,成本2毛钱都不到。


3、使用电阻分压转换电平

如下图3,R2和R3构成分压,下图中Vgprs=3.3*5.6K/(1K+5.6K)=2.8V。GPRS模块的的TX由于在发送端,2.8V在右边的接收范围内,所以不需要分压,只需要增加一个电阻限流。


图3;电阻分压法电平转换


优势:

1) 便宜:便宜是最大的优点,2个电阻一分钱不到;

2) 容易实现:电阻采购容易,占用面积小。

劣势:

1) 速度:分压法为了降低功耗,使用K级别以上的电阻,加上电路和器件的分布和寄生电容,速率很难上去,一般只能应用于100K以内的频率。

2) 驱动能力:由于使用了大阻值的电阻,驱动能力被严格控制,并不适合需要高驱动能力的场合,例如LED灯等

3) 漏电:漏电是该方案最大的缺点,由于通过电阻直连,左右两端的电压会流动,从而互相影响。例如,RS232接口采用该方案,上电瞬间外设就给主芯片提供2.8V的电平,轻则影响时序导致主芯片无法启动,重则导致主芯片闩锁效应,烧毁芯片。


4、使用电阻限流转换电平

有一些技高人胆大的工程师,有时候还会使用一个电阻限流的办法,实现两个不同电平之间的转换。具体的现实原理就是利用芯片的输入电流不超过某个值,例如74HC系列的芯片的输入电流值不能超过20mA,即可认为是安全的,如果是5V转3.3V,只要电阻>(5-3.3V)/20mA=85Ω,选择一个1K的电阻,则认为是安全的。因为芯片内部是可以等效一个负载电阻RL,与R1构成分压的关系。


图4;电阻限流法电平转换


优势:

1) 便宜:便宜是最大的优点,只需要一个电阻就解决。

2) 容易实现:电阻采购容易,占用面积小。

劣势:

1) 使用电阻限流法需要具备很高超的技术(作者自认为无法驾驭),不仅需要十分熟悉芯片内部的构成,而且还要考虑限流后的电压范围,最关键的是,出问题了以后还容易和芯片厂家扯皮,使用这类方案的工程师,胆是大了,技不一定高。


5、使用二极管钳位转换电平

有一些工程师还经常使用二极管钳位的方法进行电平转换,如下图左是3.3V转5V,当3.3V电平为高时,5V输出电压=3.3V+Vd=3.3+0.7≈4V,到达5V的高电平阈值,当3.3V电平输出为低时,5V电平输出电压约=Vd≈0.7V,在低电平阈值范围内。

如下图右是5V转3.3V,输入是高电平时,3.3Vout=3.3V+Vd≈4V,当5V电平输入为低电平时,3.3Vout=0V。


图5:3.3V转5V(左),5V转3.3V(右)


优势:

1) 漏电流小:由于二极管的漏电流非常小(uA级),可以单向防止电源倒灌,防止3.3V倒灌到5V。

2) 容易实现:二极管、电阻采购容易,占用面积小。

劣势:

1) 电平误差大:主要是二极管的正向压降较大,容易超出芯片的工作电压范围。

2) 单向防倒灌:只能单向防止倒灌,不能双向防止倒灌。

3) 速度和驱动能力不理想:由于电阻限流,驱动速度和能力均不理想,只能应用在100K以内的频率。

4) 所需器件较多。




二、使用DIALOG GREENPAK的芯片


DIALOG的GREENPAK芯片是一种可编程逻辑芯片,它功能强大,应用广泛,电平转换在GREENPAK中是非常简单的一种应用,任何双电压轨的GREENPAK芯片都 可以非常简单的实现电平转化。


通常在系统级设计中,需要组合来自两个不同电平的信号,例如模拟电压轨工作在 5V,而数字电压轨工作在 3.3V。许多 GreenPAK 通过使用双电压轨来解决这个问题,来自 不同电平的信号都可以输入到 GreenPAK,进行处理,然后 从任意电压轨输出。当使用双电压轨的器件来开始进行一个设计的时候,需要 下图所示的那样,分别输入 2 个电压轨的电压范 围, 两个电压轨的工作范围随不同器件而有所不同,但是 VDD 轨总是电压较高的轨。




三、总结


上述6种电平转换方法是比较常见的方法,电平转换主要考虑以下几个维度:

1、电平匹配:这个最重要,转换后的电平需要在对方承受的范围之内。

2、漏电流:两者之间不但电平要匹配,漏电流还不能互相影响,这个是最常犯的错。作者就见过,有工程师使用二极管电平转换做RS485输出,结果外部设备的漏电流过来影响自己设备的开机,而且自己的设备启动时输出一堆乱码,影响对方正常工作。

3、驱动能力:电平转换以后还要考虑驱动能力,例如I2C电平转换后,挂载多个I2C设备就需要考虑驱动能力的问题。

4、速度:理论上,所有的电平转换都是有速度牺牲的,速度最优的方案是专用电平转换芯片,其次是三极管方案,最差的就是电阻分压方案。

5、成本:成本这个因素交给产品经理考虑吧。

6、路数:太复杂的转换方案不适合多路数的情况,会占据板卡太多的面积。例如4bit的SD卡信号1.8V转3.3V,就不适合使用三极管方案。

7、GREENPAK的可编程逻辑芯片是近年慢慢进入中国的半导体市场,在各种各样的应用场景均可以找到它的应用,它是基于芯片平台的功能应用开发。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 电源
  • DC
  • AC
  • 稳压
  • 传统变压器及高功率密度变压器的常见绕组结构

    一、传统变压器篇 单路输出 Flyback 及常见的变压器绕组结构 红色:初级绕组 紫色:辅助绕组 黄色:次级绕组 特点:辅助绕组位夹在初级、次级中间 缺点: 1, 临近效应很强,绕组交流损耗大 2, 初、次级间的漏感较大,吸收回路损耗较大,效率较低 优点: 1,工

    02-26
  • BUCK-BOOST电路的原理及设计选型

    1 引言      BUCK-BOOST电路是一种常用的DC/DC变换电路,其输出电压既可低于也可高于输入电压,但输出电压的极性与输入电压相反。下面我们详细讨论理想条件下,BUCK-BOOST的原理、元器件选择、设计实例以及实际应用中的注意事项。 2 BUCK-BOOST电路原理 BUCK-

    02-23
  • 电源方案选择:LDO与DC/DC

    LDO是low dropout regulator,意为低压差线性稳压器,是相对于传统的线性稳压器来说的。传统的线性稳压器,如78xx系列的芯片都要求输入电压要比输出电压高出2v~3V以上,否则就不能正常工作。但是在一些情况下,这样的条件显然是太苛刻了,如5v转3.3v,输入与输

    02-22
  • 工程师分享电源散热设计和仿真

    当产品系统的热量增加时,系统的功耗就会成倍的增加,这样在设计电源系统时,就会选择更加大电流的解决方案,而这样必定会带来成本上的增加,当电流大到一定程度时,成本就会成倍成本的增加。下面就给大家分享一篇来自TI工程师关于电源散热设计和仿真方面的文

    02-22
  • 减少EMI、保持效率及空间优化的一种电源解决方案

    有限且不断缩小的电路板空间、紧张的设计周期以及严格的电磁干扰(EMI)规范(例如CISPR 32和CISPR 25)这些限制因素,都导致获得具有高效率和良好热性能电源的难度很大。在整个设计周期中,电源设计通常基本处于设计过程的最后阶段,设计人员需要努力将复杂

    02-22
  • 元器件基础,充分理解电感式升压原理

    本文介绍电感式DC-DC的升压器原理,属于基础性质,适合那些对电感特性不了解,但同时又对升压电路感兴趣的同学。 想要充分理解电感式升压原理,就必须知道电感的特性,包括电磁转换与磁储能。 我们先来观察下面的图: 这个图是电池对一个电感(线圈)通电,电感

    02-20
  • 一个类比解释反激式电源原理

    反激式电源工作原理是怎么回事? 要说反激式拓扑电源,由于其价格低廉,结构简单,在输出功率150W范围内应用极为广泛,这里有一个重要的磁性元器件,就是我们通常说的“变压器”,乍一看,的确是变压器的样子,有电气隔离,还可以完成变压(在开关电源中一般

    02-19
  • 解决粗心接反导致的烧板,都有哪些电路设计方案

    硬件工程师的很多项目是在洞洞板上完成的,但有存在不小心将电源正负极接反的现象,导致很多电子元器件都烧毁,甚至整块板子都废掉,还得再焊接一块,不知道有什么好的办法可以解决? 首先粗心不可避免,虽说只是区分正负极两根线,一红一黑,可能接线一次,

    02-01
  • 疏通理解典型的反激式电源工作原理

    反激式电源工作原理是怎么回事 要说反激式拓扑电源,由于其价格低廉,结构简单,在输出功率150W范围内应用极为广泛,这里有一个重要的磁性元器件,就是我们通常说的“变压器”,乍一看,的确是变压器的样子,有电气隔离,还可以完成变压(在开关电源中一般为

    02-01
  • 抑制减少开关电源纹波的五种做法

    开关电源纹波的测量 要有效降低开关电源输出纹波我们首先得有个比较靠谱的测试方法,不能是由于测试方法的问题而导致的假波形是整改不好的 基本要求:使用示波器AC 耦合,20MHz 带宽限制,拔掉探头的地线 1,AC 耦合是去掉叠加的直流电压,得到准确的波形。 2

    01-29
  • LDO与DC/DC,这样理解就懂了

    LDO: 低压差线性稳压器,故名思意为线性的稳压器,仅能使用在降压应用中,也就是输出电压必需小于输入电压。 优点:稳定性好,负载响应快,输出纹波小。 缺点: 效率低,输入输出的电压差不能太大,负载不能太大,目前最大的LDO为5A,但要保证5A的输出还有很

    02-02
  • 亥姆霍兹线圈是什么?

    ZLG PSA系列可编程交流电源是亥姆霍兹线圈全新供电解决方案,延续传统【信号发生器+放大器】组合电源的优势,而且具备更便捷操作体验、更小占地空间、更低成本等优点。 亥姆霍兹线圈(Helmholtz coil)是由一对完全相同的圆形导体线圈组成,产生大体积的均匀

    01-27
下载排行榜
更多
广告