分析实例:了解DC/DC变换器一些常见的问题
电子阔少 2021-04-26

先介绍几个应用实例从这些应用实例中,了解如何分析DC/DC变换器设计中的问题及解决方法,从常见的buck电路,在平时设计和调试过程中,从DCDC变换器性能,功能设置,控制环设计,板子布局和测试技巧,通过这些分析实例能了解DCDC电路中在试机阶段快速解决掉一些常见的问题。


常见的电子产品的电源系统中, DC-DC开关电路中的Buck转换电路入手分析,Buck是最基本的DC-DC电路之一。有关Buck电路一些设计的主要原则,好多人已经熟悉了。


电子产品通常是从一个交流电取电,转成400V的一个高压,再通过一个高压的降压 DC/DC,转化为DC12V中间的直流母线,终端负载可能是一个FPGA,也可能是微处理器MCU,也可能是一个Flash存储器。如图的供电系统是给一个电子产品供电,最终的负载所需要的供电电频,可能不尽一样,这时就会在中间母线12V,会在终端的负载之间一般要加buck电路,把12V转化为负载需要的电压。


图1就是一个电源系统功率传递的简图,


图1一个电源系统功率传递的简图


电源中最常见的DC/DC中的buck变换器,是最简单最高效的DCDC变换器,应用非常广泛,当然它的工作原理也非常的简单。


图2 的Buck变换器的开关状态工作简图


它主要有两个开关管、一个电感和一个电容组成,其工作模态主要有两个,

上管导通的时输入电压通过Q1,电感被输出电源和负载供电,当上管关断的时候下管导通,

电感电流通过Q2续流,此时电感电流下降。图3是buck电路的一个工作波形,图的上面是开关节点的电压,图的下面是电感的电流。


图3 buck电路的一个工作波形


问题1:变换器的性能

先看一下图4中的两个图,从图中看,哪个器件更适合8A的输出电流呢?左边这个是芯片A 最高温度是59.6℃。右边的是芯片B ,最高温度是82.4℃。


但是这两个图的芯片,是在测试条件以及工作频率是一样的条件下测试的。

Vin:12V;Vout:1.8V;工作电流:8A;工作频率:700KHz


图4,两个测试条件一样的buck芯片温升的热仿真图


问题出来了,看图中芯片的仿真温度是怎么回事?

其实从这个图中可以非常直观看出,partB的温升比partA高了20℃

那它的温升面积也更大,但奇怪的是这两个器件的额定电流都是8A

这又是为什么呢

我们来看看它们究竟有什么区别,如图5是partA和partB 参数对比


图5是partA和partB 参数对比


通过图5表格对比可以看到,两个器件的输入电压范围、额定电流,以及尺寸都是相同的,唯一的不同就是在于它的Rds(on),partB的Rds(on)比partA的大了两到三倍

管子导通的时候,一个导通损耗也比较大,对于partB,它的温升接近60℃,如果环境温度是85℃的话,那么芯片将不能正常工作,所以在高温环境下partB是不能使用的。

另一方面,对于温升,我们通常需要考虑,平均电流或者说是持续电流,如果不需要长时间的工作,或者是散热条件比较良好的情况下,选择成本更低的partB ,也不失为一种明智的选择。


问题2:很多时候我们经常遇到的问题是,刚做好的板子,上电,发现启动不了。

示波器看数字电压的时,可能会看到这样的波形,数字电压上去了一点就掉下来,并且这个过程不停的重启,有时候甚至在非常轻的情况下,电感电流都会冲得非常高。

为什么呢?

为什么变换器不能正常启动


先假设几个可能:

1是输出被短路;

2是触发了过流保护;

3是芯片的最小导通之间受限了;

4是因为芯片温度太高;

5是触发了过温保护。

实际工作中,我们遇到这来问题,大部分电源工程师认为是是触发了过流保护,但也有人认为是最小导通时间受限,或者是输出电压被短路了。


图6,电感Vout和IL的测试图


其实这个是因为输出电容太大,而使得变换器在启动过程中对电容的充电电流太大,而触发了芯片内部的过流保护。

从图6,电感Vout和IL的测试图,可以看到,启动过了一段时间就会重新尝试启动,这是典型的自动重启功能在起作用。

那么如何解决这个问题,分析一下它启动时的电感电流


图7电路启动电容充电


电感电流是等于负载电流,加电容充电的电流,此时电容的电流和启动时间相关。

可以通过图7中的式子,启动时间越长,它的一个充电电流就会越小,而电容量越大,它的充电电流就越大,所以会在电感上看到更大的冲击电流。


图8启动电流测量


电路软启动的时间的确定,主要取决于采用较少输出电容,就可以减小电路的冲击电流,为了正常启动,我们必须避免冲击电流过大,触发过流保护,或者导致输出电压出现明显的下跌,其次,如果是多级电路,要按照一定的秩序去启动各路输出,来避免同样的问题。


问题3:控制环设计带来的波形问题

有时在测量波形时,会被开关波形大小波搞得一头雾水,看到如就是一个宽的,一个窄的这两个波形,那出现这种波形的原因


图8,增益裕量是5db开关波形大小波问题


是什么呢?

正确答案应该是增益裕量不足,我们从它的波特图就可以非常明显看出来,它的增益裕量只有5db ,是非常小的,可以看作是一个简单的反馈控制系统,这个很容易导致我们的环路不稳定。

通常来说,环路的增益裕量要大于10个db ,而相位裕量也要在60度以上。


图9,增益裕量调整到10db的波形和波特图


重新调整了环路参数,使其增益裕量在所有的工作条件下,都大于10db 。

这时候可明显看到,开关节点的波形就稳定下来了。

由此可见,足够的环路裕量对于系统的稳定工作,是非常有必要的。

问题4:板子布局带来的问题。

电路做好了,电压值不稳定,测量波形是开关节点的波形有很大的尖峰,也很振荡。

这个原因是什么:

我们从下面这几张图就可以看出来


图10 输入电容的位置问题


第一个是芯片附近根本没有输入电容,对应的波形就是我们刚才所看到的波形,振荡电压高达10V。第二个是我们在芯片的左边放了一个电容,但是没有很靠近芯片,结果振荡降下来的一点,但是还是比较大,然后我们又在芯片附近放了两个电容,这个时候振荡波形就降到5V了,已经有非常明显的改善,如果我们在芯片的两边都放电容,可以看到它的振荡就非常小2V左右,所以这个是跟我们芯片。两边的一个输入电容摆放的位置有关系。


图11 BUCK电路电感的续流回路对比


我们来看一下,对于buck变换器

它的主要功率回路有两个,一个是输入到输出的回路,一个是电感的续流回路,这两个回路的面积,会直接影响到我们的一些寄生参数,而减少它的环路面积,可以有效减少我们回路里面的寄生电感,同时也降低了电磁干扰。

还需要注意的是,把一些对噪声比较敏感的模拟线路,比如说Fb、comp这些引脚,原理噪声比较大的功率回路,像se或者是boot这些脚。另外加一个缓通电路或者门极电阻,来减慢它的一个开关速度,这个也是可以减小到它开关上面的一些振荡,但是这是以增加开关损耗为代价来实现的,并不是最优的办法。


问题5:测试技巧问题

DC-DC转换器可以看作是一个简单的反馈控制系统,有时在分析电路的反馈系统稳定性,而波特图是很方便的工具,而有时测出的波特图上面的一些看起来好像噪声很大,毛毛躁躁的


图12 没有优化的波特图


看到这种波特图,对自己搞的电路可能心里会很没底,到底是测试有问题,还是本来测试结果,是哪里出了问题呢?


图13 信号注入大的波特图


原因是注入交流小信号的幅值太高

为什么?我们在测量环路的波特图时,是从输出电压上面,注入一个交流的小信号,通常来说这个信号是远远小于我们的输出电压,如果注入信号太大的话,它就会影响我们电路的一个正常工作,有可能导致开关波形出现,上面所示的一个丢波现象,此时得到的波特图是没有任何意义的。

因为我们的电流已经不是在正常状态了,那我们减少注入信号的一个幅值,就会看到我们的


图14  优化后测量的波特图和Vout和开关节点SW的震荡波形


波特图又变平滑了。那如何设置注入信号的大小呢?如果注入信号太大的话,可能会导致电路的工作不正常,但是注入信号太小,又可能导致我们测量的不准确。

通常来说,我们如何去选择一个比较合适的信号,来得到准确的一个波特图,首先注入一个比较小的信号,然后慢慢增大到信号的幅值,直到在输入电压上可以观测到,看到一个比较规律而稳定的振荡。

另外,还可以在注入信号上面采用不同的频率,对应不同的幅值,来实现最佳测量的目的。


总结一下

从DC/DC变换器的一些基本工作原理,以及例举了一些常见的问题,分析了BUCK电路常见的错误和解决办法,包括变换器的额定功率,以及它的一些热性能它对控制环路的补偿,和起机过程中得功能设置,然后PCB layout对我们一些开关波形的影响,以及一些波特图的测量技巧。

然后我们解释了这些问题发生的原因,以及如何避免这些问题的发生,可以作为在调试阶段,或者设计过程中,作为一个参考材料,帮助大家解决一些常见的问题。

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
热门推荐
  • 相关技术文库
  • 电源
  • DC
  • AC
  • 稳压
  • 三相PWM整流拓扑(仿真代码)

    OBC用三相PWM整流拓扑主要原因是可以双向变换,后面DCDC再用三相CLLC就能完美配合。

    08-09
  • 开关电源常见的基本拓扑结构

    1、基本名词     常见的基本拓扑结构     ■Buck降压     ■Boost升压     ■Buck-Boost降压-升压     ■Flyback反激     ■Forward正激     ■Two-Transistor Forward双晶体管正激     ■Push-Pull推挽     ■Half Bridge半桥     ■Full Bridge全桥     ■S

    05-10
  • LLC开关电源计算过程推导

     免费申请开发板  推荐阅读: 点击下方『面包板社区』卡片关注我们, 每天学点电子技术干货 ▲ 点击关注,后台回复"关键词",领取300 G学习资料包!  内容合作 | 视频、课程合作 | 开发板合作| 转载开白  请联系小助手微信:15889572951(微信同号) 点击阅读

    05-06
  • 移相全桥电源12种工作模态

    在早期的大功率电源(输出功率大于1KW)应用中,硬开关全桥(Full-Bridge)拓扑是应用最为广泛的一种,其特点是开关频率固定,开关管承受的电压与电流应力小,便于控制,特别是适合于低压大电流,以及输出电压与电流变化较大的场合。但受制于开关器件的损耗,无

    05-07
  • 大牛总结:六种DC/DC变换电路分析比较

    基本原理 直流-直流降压变换器(BUCK变换器) 直流-直流升压变换器(BOOST变换器) 直流降压升压变换器(BUCK-BOOST变换器) 直流升压降压变换器(CUK变换器) 两象限/四象限直流-直流变换器 单端正激变换器 单端反激变换器 *本文系网络转载,版权归原作者所有,如有

    04-29
  • 肖特基二极管有什么特别之处?

    注| 文末留言有福利 提到低功耗、大电流、超高速半导体器件,很多工程师同学肯定能首先想到肖特基二极管(SBD)。 但是你真的会用肖特基二极管吗?和其他的二极管比起来,肖特基二极管又有什么特别之处呢?下面一起来 划重点 吧! 0 1 肖特基二极管的关键参数

    04-27
  • 图解BUCK电路及PCB布局

    Buck架构: 当开关闭合的时候: 当开关断开的时候: 根据伏秒平衡定理可得: (Vin-Vout)*DT=Vout(1-D)T===>Vin/Vout=D<1 在实际DCDC应用中: 当Q1闭合的时候,在图1-a中,红线示出了当开关元件Q1导通时转换器中的主电流流动。CBYPASS是高频的去耦电容器,CI

    04-25
  • 开关电源公式与对应电路

    1 Buck 变换器的功率器件设计公式 (1):Buck 变换器的电路图: (2):Buck 变换器的主要稳态规格: (3):功率器件的稳态应力: -- 有源开关 S: -- 无源开关 D: 上述公式是稳态工作时,功率器件上的电压、电流应力。选择功率器件时,其电压耐量可放一个

    04-23
  • 为什么PWM驱动芯片用图腾柱?

    推挽电路的应用非常广泛,比如单片机的推挽模式输出,PWM控制器输出,桥式驱动电路等。推挽的英文单词:Push-Pull,顾名思义就是推-拉的意思。所以推挽电路又叫推拉式电路。 图1:锯木头 推挽电路有很多种,根据用法的不同有所差异,但其本质都是功率放大,增

    04-23
  • 开关电源的输入滤波器(共模、差模)

    开关电源的输入滤波器 开关电源的输入滤波器是针对共模噪声和差模噪声,分别采用适合不同噪声特性的滤波器。 差模滤波器 共模滤波器采用电容器、电感、铁氧体磁珠和电阻等。图例中是使用了LC的π型滤波器。各部件对噪声具有如下作用: 电容器:将噪声电流旁路

    04-21
  • 入门级电源工程师常遇到的问题

    先上图 一些入门级的电源工程师常遇到这样一个问题,在电路图中的Vcc接芯片的地方加入了一个12V左右稳压管。目的是为了保证芯片的电压上限,意图很明确,稳压管能够保护芯片不会因为电压过高问题而烧毁。看上去没啥毛病,但实际上很危险。 我们一起来初步分析

    04-19
  • 电源控制环路的设计计算

    引言 作为工程师,每天接触的是电源的设计工程师,发现不管是电源的老手,高手,新手,几乎对控制环路的设计一筹莫展,基本上靠实验.靠实验当然是可以的,但出问题时往往无从下手,在这里我想以反激电源为例子(在所有拓扑中环路是最难的,由于RHZ 的存在),大概说一下怎

    04-16
下载排行榜
更多
EE直播间
更多
广告
X
广告