24V电源工作原理分析
开关电源解析 2022-09-28

        最近比较忙,没怎么关注留言,今天打开居然有几十条私信,今天把能简单几句话回复的都回复了,剩下一两句话说不清楚的那我们就一个一个的来用文章解决。

        首先留言里有朋友发过来一张手绘原理图,让我分析一下主要的工作原理,由于手绘原理图比较模糊,所以用软件来将原理图还原清晰一点,如下所示:

        从上图我们可以看出,这个电源属于典型的反激转换型开关电源,我们也可以称之为回扫变压器型开关电源。这个电路从功能上大致可以分为电源输入电路,启动电路,主开关电路,保护电路,二次绕组整流滤波电路及反馈稳压电路。

        电源输入电路主要由保险管F1、差模电容C11、C12;共模扼流圈L1、NTC、共模C3与C6;整流器D6;高压滤波电容E2、E3组成。

        启动电路主要由R5;R14;滤波电阻E1和稳压二极管Z1组成。

        主开关电路由芯片1M0880与周围元器件共同组成。

        保护电路:由VD1;C10和R8组成高压尖峰吸收保护线路,由C4和R3组成MOS管开关保护线路;由C9和R1组成的二极管开关保护线路。

        二次绕组整流滤波电路元器件就比较复杂,我们在下面再详细介绍。

        我从网上下载了主芯片的内部结构图,如下图所示:

        据介绍里说,这款是周期过电流限制,具有过载、过压保护功能、欠压锁定、软启动、内部温度关断等优良的保护特性。

        工作原理:

        电源经保险管F1输入,电容C11、C12与扼流圈L1组成滤除电网共模干扰;C11、C12安规电容,电容C3和C6用于滤除电网差模干扰。

        NTC是负温度系数热敏电阻,刚上电时电阻值较大,正常工作时,发热后电阻阻值变得较小,用于防止上电瞬间电网高压大电流对滤波电容E2、E3的冲击。

        VD5为整流桥,将交流电压整流成脉动电压,再经E2、E3滤波,图中有个细节,那就是E2和E3都是200V耐压的电容,所以我们要将E2和E3进行串联;R9和R11分别E2和E3的放电电阻,在外接电源切断,芯片不能正常工作时,R9和R11就会将E2和E3上残留的电能进行释放,以免对人体意外触电。

        R5为启动电阻,电压加到芯片的供电端,一旦系统正常工作后,二次绕组经VD4整流,E1滤波给芯片提供电源,电阻R12与电容E1组成RC滤波电路,提高电源的稳定性。稳压管Z1用于限制电压过高,防止损坏芯片,正常工作时,二次绕组的输出电压一般不会超过Z1的稳压值。

        VD1、C10和R8组成RCD尖峰吸收电路,吸收芯片内部MOS管截止时一次绕组产生的尖峰电压。同理电阻R3和电容C4并联在芯片内部场效应管两端,也是起到保护作用。这种运用非常普遍,尤其是在可控硅电路中最为常见。

        二次绕组整流由VD3承担,E3~E7为输出端滤波电容,5只470uF电容并联,相当于2350uF的容量。另外电容与L2构成π型滤波线路,输出稳定电压,纹波电压小,R13为电容的负载电阻,也可以称为放电电阻。R4为发光二极管DS1的限流电阻,用于指示电源正常工作与否。

        稳压电路由电阻R2、R7、RW1和431共同组成,根据参数,我们可以计算出二次绕组的输出电压为:Uo=2.5*【1+R7/(R2+RW1)】;调节RW1的阻值,当RW1=0时,输出电压为27.5V;当RW=2K时,输出电压为22.6V。

        稳压电路主要依靠431来平衡输出电压,当我们电源输出电压升高时,431的参考端电压也同步上升,驱动能力增强,经光耦拉低芯片的反馈FB脚电压,使得芯片开关占空比减小,输出电压相应降低,平衡了上升的电压值,达到自动控制平衡效果。

        软启动功能是由芯片5脚来控制,初始上电瞬间,反馈信号还没有建立时,软启动可以限制芯片内部场效应管导通的最大电流,防止击穿。

本文源自微信公众号:开关电源解析,不代表用户或本站观点,如有侵权,请联系nick.zong@aspencore.com 删除!

声明: 本文转载自其它媒体或授权刊载,目的在于信息传递,并不代表本站赞同其观点和对其真实性负责,如有新闻稿件和图片作品的内容、版权以及其它问题的,请联系我们及时删除。(联系我们,邮箱:evan.li@aspencore.com )
0
评论
  • 相关技术文库
  • 电源
  • DC
  • AC
  • 稳压
  • 揭秘新老款MacBook Pro的USB Type-C有何不同

      尽管参与USB-IF的多家巨头,像是苹果与Intel都以具体移动告诉市场,USBtype-c就是未来,不过在未来的美好来临前,使用者却仍需面对连接埠的阵痛期

    11-24
  • 利用无线探头测量感应电源的电压频率转换器

    为执行长期监视任务的便携式遥测系统供电,向人们提出了有趣的设计挑战。电池不适合于某些关键性应用,且在这些环境中,设计人员一般用无线感应链路来传输功率与数据。感应链路由一个驱动固定初级线圈的射频发射器与一个为便携式装置提供电源的松耦合次级线圈组成。对设计工程师来说,测量发射功率相当重要,因为它会限制设计人员可包含至便携式装置中的电路数量。但不幸的是,传统测试设备不适合执行该任务,因为标准电压探头会拾...

    11-24
  • 全面讲解pwm波形发生器

    波形发生器在生活中有诸多应用,不过对于波形发生器,大家并非均有所了解。此外,波形发生器种类较多,无法在短时间内全部掌握。本文中,将为大家讲解pwm波形发生器,并

    11-24
  • 线交互式UPS逆变器特性

    一、功能部件输入开关市电正常时,开关导通;市电停电时,开关自动断开,防止逆变器向电网反向馈电。自动稳压有市电供电时,可粗略稳压并吸收部分电网干扰。其稳压方式与后

    11-23
  • LTC3643 用作针对 3.3V 电压轨的备份电源解决方案

    在嵌入式系统需要可靠供电的电信、工业和汽车应用中,数据丢失是一个关切的问题。供电的突然中断会在硬盘和闪存器执行读写操作时损坏数据。我们常常使用电池、电容器和超级

    11-23
  • 如何测量开关电源稳定性

    随着电子,自控,航天,通讯,医疗器械等技术不断向深度和广度的发展,势必要求为期供电的电源要有更高的稳定性,即不仅要有好的线性调节率、负载调节率还要有快速的动态负

    11-23
  • 如何对一个简单的峰值电流限制进行改进

    故障保护是所有电源控制器都有的一个重要功能。几乎所有应用都要求使用过载保护。对于峰值电流模式控制器而言,可以通过限制最大峰值电流来轻松实现这个功能。在非连续反向

    11-23
  • NTC PTC热敏电阻在电源电路中的作用

    本文以问答的形式介绍了NTC PTC热敏电阻在电源电路中的作用。问题1: NTC电阻串联在交流电路中主要是起什么作用!它是怎样工作!请大侠指点!谢谢!问题2:

    11-23
  • 适用于便携式设备的功率开关电源IC

    1 引言开关电源是近几年电源市场的焦点之一,它最大的优点是大幅度缩小变压器的体积和重量,这样就缩小了整个系统的体积和重量。一般说来,开关电源的重量是线性电源的1

    11-23
  • 电流控制电流传输器 CCCII

    在模拟电子电路中,人们长久以来习惯于采用电压作为信号变量,并通过处理电压信号来决定电路的功能。因此促成了大量电压信号处理电路,或者称为电压模式电路的诞生和发展。

    11-23
下载排行榜
更多
广告