tag 标签: 数字温度传感器

相关博文
  • 热度 21
    2014-7-6 07:23
    1516 次阅读|
    0 个评论
    1 引言 温度是日常生活中非常重要的物理量,其测量包括接触式和非接触式两种,前者需要感温元件与被测物体接触,会产生滞后现象,后者则是通过接收被测介质发出的辐射来实现的。实时温度控制系统运用数字温度传感器DS18B20采集温度,单片机作为主控芯片来对温度值进行处理,控制和传输,通过蜂鸣器实现报警功能,运用VB编程制作上位机管理软件。整个系统设计结构简单,连接方便,易于管理,可以应用于人不宜或者不易接触的地方,达到自动读取环境温度,并具有报警功能,节省人力和物力。 2 系统基本原理 系统结构框图如图1所示,数字温度传感器DS18B20将待测介质温度值传递给单片机,单片机对温度值进行处理,当温度超出所设范围(本系统所设温度极限为31℃)则通过报警电路实现报警。通过RS232串口实现PC机与单片机的通信,单片机将采集到的温度值传递给PC机。 图1 系统结构框图 通过使用VisualBasic中的通信控件MSComm(MicrosoftCommunicationControl),可以在Windows环境下轻松实现串口数据交换,MSComm是Microsoft提供的简化Windows下串行通信编程的ActiveX控件,通过对此控件的属性和事件进行编程,可以方便地发送和接收数据。利用MSComm控件制作上位机软件,可以实时显示环境温度值和提示信息。 3 硬件设计 3.1 单片机控制设计 本设计采用STC公司的STC89C52单片机作为主要控制芯片,此单片机具有4组8位I/O口(DIP-40封装),3个16位定时/计数器,8个中断源,8KBFlash程序存储器,512Byte片内RAM数据存储器,一个全双工串行通信接口。STC单片机性价比高,功能多,抗干扰能力很强,串口编程很方便,保密性很强。 图2 单片机控制电路 采用数字温度传感器DS18B20测量环境温度,DS18B20是美国Dallas公司生产的单线数字温度传感器,它具有微型化、低功耗、高性能、抗干扰能力强、易配微处理器等优点,可以直接将温度值转换为串行数字信号供处理器处理,特别适合多点温度测控系统,每片DS18B20都有惟一的产品号并可存入其ROM中,以便在构成大型温度测控系统时在单线上挂接任意多个DS18B20芯片。从DS18B20读出或写入DS18B20信息仅需要一根端口线,其读写及温度变换功率来源于数据总线,该总线本身也可以将所挂接的DS18B20供电,而无需额外电源。DS18B20能提供9位温度读数,它无需任何外围器件即可方便地构成温度检测系统。如图2所示,只需将DS18B20的第4脚(DQ)和单片机的一个I/O口(P2.2)相连,另外还需接一个上拉电阻即可。单片机通过其I/O口获得温度值,很方便地进行处理,传输和控制。 报警电路采用蜂鸣器作为报警器件,如图2所示,只需很少的器件,就能实现单片机与蜂鸣器的连接。当与蜂鸣器所连单片机的I/O口输出低电平时,蜂鸣器则能发出声音,系统设计中,当温度超过31℃时,蜂鸣器则发出声音,实现报警功能。 3.2 单片机与PC机接口设计 单片机要和PC机实现串口通信,需要进行电平转换,因为单片机使用的是TTL电平,而PC机串口使用的是RS232电平。运用MAXIM公司生产的MAX232芯片实现TTL电平和RS232电平转换,如图3所示,通过其第11脚和第12脚分别与单片机的第11脚和第10脚连接,通过第13脚,第14脚分别与PC机串口的第2脚,第3脚进行连接,就能实现单片机和PC机的电平转换、连接、和通信。单片机与PC机接口电路原理图如图3所示。 图3 单片机与PC机串口通信接口电路 4 软件设计 系统单片机程序采用C51进行编程,主要完成对DS18B20的调用中断管理、测量温度值的计算以及单片机与PC机的串口通信。上位机软件采用VBMSComm控件制作,由于C51程序较长,此处只介绍上位机软件编写程序,VB程序如下: Private SubForm_Load()'........初始化设置 MSComm1.CommPort=1'……使用Com1口 MSComm1.Settings="9600,n,8,1"'.设置通讯参数 MSComm1.InBufferSize=4'设置接收寄存器等待读取的字符数为4 MSComm1.RThreshold=0'初始化为不产生OnComm事件 MSComm1.PortOpen=True'.打开串口 MSComm1.InputLen=4'设置并返回Input属性从接收缓冲区读取的字符数为4 MSComm1.InputMode=comInputModeText'设置接收方式为文本方式 Me.Caption="实时温度控制系统"'设置标题为"实时温度控制系统" End Sub Private SubCommand1_Click()'..自动读取按钮 Timer1.Enabled=True'........开启定时器 MSComm1.RThreshold=1'........开启OnComm事件触发 End Sub Private SubCommand2_Click()'..清空内容按钮 Timer1.Enabled=False'........关闭定时器 MSComm1.RThreshold=0'........停止产生OnComm事件 Shape1.FillColor=RGB(255,255,255) '........设置信号指示灯的颜色为白色 Text1.Text=""'........清空文本框1的内容 Text2.Text=""'........清空文本框2的内容 Text3.Text=""'........清空文本框3的内容 End Sub Private SubCommand3_Click()'..关闭窗口按钮 Unload Me'........卸载窗体 End Sub Private SubMSComm1_OnComm()'......事件触发 Dimrec AsString Select CaseMSComm1.CommEvent Casecom EvReceive rec=MSComm1.Input Text3.Text=rec MyResult=(Text3.Text"31") '........判断当前温度是否达到31℃ If MyResult=FalseThen'....达到31℃ Shape1.FillColor=RGB(255,0,0)'........信号灯为红色 Text1.Text="产生报警"'........同时信息提示显示"产生报警" Else'........未达到31℃ Shape1.FillColor=RGB(0,128,0)'........信号灯为绿色 Text1.Text="温度正常"'........同时信息提示显示"温度正常" End If Text3.Text="" Text3.Text=rec+"℃" MSComm1.InBufferCount=0'清空接收缓冲区 End Select End Sub Private SubTimer1_Timer() Text2.Text=Now'........设置定时器产生时钟,显示当前时间 End Sub 5 系统调试 系统实现功能包括,通过下位机(单片机)将DS18B20所测温度值实时传输给上位机(PC机),通过上位机(PC机)监控环境温度,并具有报警功能。 1.在上位机软件中点击"自动读取"按钮实现自动读取当前时间,温度值。当正常温度情况下,信号指示灯为绿色,同时信息提示为"温度正常"。 2.当温度达到所设温度极限时(本系统所设温度极限为31℃),信号灯变为红色,信息提示为"产生报警",同时硬件部分的蜂鸣器会报警,如图4所示为产生报警时上位机显示部分。 图4 产生报警时上位机显示部分 6 结束语 运用能直接得到数字信号的温度传感器DS18B20采集温度,将温度值通过单片机I/O口传递给单片机进行处理,传输和控制,当温度值达到所设温度极限时产生报警,通过串口数据线实现下位机(单片机)与上位机(PC机)通信,并运用VBMSComm控件制作上位机软件,达到实时显示环境温度和提示信息。系统设计连接简单,实现容易,使用方便。
  • 热度 19
    2013-3-23 22:22
    4239 次阅读|
    1 个评论
    第三十五章  DS18B20数字温度传感器实验     STM32虽然内部自带了温度传感器,但是因为芯片温升较大等问题,与实际温度差别较大,所以,本章我们将向大家介绍如何通过STM32来读取外部数字温度传感器的温度,来得到较为准确的环境温度。在本章中,我们将学习使用单总线技术,通过它来实现STM32和外部温度传感器(DS18B20)的通信,并把从温度传感器得到的温度显示在TFTLCD模块上。本章分为如下几个部分: 35.1 DS18B20简介 35.2 硬件设计 35.3 软件设计 35.4 下载验证 35.1 DS18B20简介 DS18B20是由DALLAS半导体公司推出的一种的“一线总线”接口的温度传感器。与传统的热敏电阻等测温元件相比,它是一种新型的体积小、适用电压宽、与微处理器接口简单的数字化温度传感器。一线总线结构具有简洁且经济的特点,可使用户轻松地组建传感器网络,从而为测量系统的构建引入全新概念,测量温度范围为-55~+125℃ ,精度为±0.5℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~l2位的数字值读数方式。它工作在3—5.5 V的电压范围,采用多种封装形式,从而使系统设计灵活、方便,设定分辨率及用户设定的报警温度存储在EEPROM中,掉电后依然保存。其内部结构如图35.1.1所示: 图35.1.1 DS18B20内部结构图 ROM中的64位序列号是出厂前被光记好的,它可以看作是该DS18B20的地址序列码,每DS18B20的64位序列号均不相同。64位ROM的排列是:前8位是产品家族码,接着48位是DS18B20的序列号,最后8位是前面56位的循环冗余校验码(CRC=X8+X5 +X4 +1)。ROM作用是使每一个DS18B20都各不相同,这样就可实现一根总线上挂接多个。 所有的单总线器件要求采用严格的信号时序,以保证数据的完整性。DS18B20共有6种信号类型:复位脉冲、应答脉冲、写0、写1、读0和读1。所有这些信号,除了应答脉冲以外,都由主机发出同步信号。并且发送所有的命令和数据都是字节的低位在前。这里我们简单介绍这几个信号的时序: 1 )复位脉冲和应答脉冲 单总线上的所有通信都是以初始化序列开始。主机输出低电平,保持低电平时间至少480 us,,以产生复位脉冲。接着主机释放总线,4.7K的上拉电阻将单总线拉高,延时15~60 us,并进入接收模式(Rx)。接着DS18B20拉低总线60~240 us,以产生低电平应答脉冲, 若为低电平,再延时480 us。 2 )写时序 写时序包括写0时序和写1时序。所有写时序至少需要60us,且在2次独立的写时序之间至少需要1us的恢复时间,两种写时序均起始于主机拉低总线。写1时序:主机输出低电平,延时2us,然后释放总线,延时60us。写0时序:主机输出低电平,延时60us,然后释放总线,延时2us。 3 )读时序 单总线器件仅在主机发出读时序时,才向主机传输数据,所以,在主机发出读数据命令后,必须马上产生读时序,以便从机能够传输数据。所有读时序至少需要60us,且在2次独立的读时序之间至少需要1us的恢复时间。每个读时序都由主机发起,至少拉低总线1us。主机在读时序期间必须释放总线,并且在时序起始后的15us之内采样总线状态。典型的读时序过程为:主机输出低电平延时2us,然后主机转入输入模式延时12us,然后读取单总线当前的电平,然后延时50us。 在了解了单总线时序之后,我们来看看DS18B20的典型温度读取过程,DS18B20的典型温度读取过程为:复位à发SKIP ROM命令(0XCC)à发开始转换命令(0X44)à延时à复位à发送SKIP ROM命令(0XCC)à发读存储器命令(0XBE)à连续读出两个字节数据(即温度)à结束。 DS18B20的介绍就到这里,更详细的介绍,请大家参考DS18B20的技术手册。 35.2 硬件设计 由于开发板上标准配置是没有DS18B20这个传感器的,只有接口,所以要做本章的实验,大家必须找一个DS18B20插在预留的18B20接口上。 本章实验功能简介:开机的时候先检测是否有DS18B20存在,如果没有,则提示错误。只有在检测到DS18B20之后才开始读取温度并显示在LCD上,如果发现了DS18B20,则程序每隔100ms左右读取一次数据,并把温度显示在LCD上。同样我们也是用DS0来指示程序正在运行。 所要用到的硬件资源如下: 1)  指示灯DS0  2) TFTLCD模块 3)  DS18B20温度传感器        前两部分,在之前的实例已经介绍过了,而DS18B20温度传感器属于外部器件(板上没有直接焊接),这里也不介绍。本章,我们仅介绍开发板上DS18B20接口和STM32的连接电路,如图35.2.1所示:   图35.2.1 DS18B20接口与STM32的连接电路图 从上图可以看出,我们使用的是STM32的PG11来连接U13的DQ引脚,图中U13为DHT11(数字温湿度传感器)和DS18B20共用的一个接口,DHT11我们将在下一章介绍。DS18B20只用到其中的3个引脚(U13的1、2和3脚),将DS18B20传感器插入到这个上面就可以通过STM32来读取DS18B20的温度了。连接示意图如图35.2.2所示: 图35.2.2 DS18B20连接示意图        从上图可以看出,DS18B20的平面部分(有字的那面)应该朝内,而曲面部分朝外。然后插入如图所示的三个孔内。 35.3 软件设计 打开上一章的工程,首先在HARDWARE文件夹下新建一个DS18B20的文件夹。然后新建一个ds18b20.c和ds18b20.h的文件保存在DS18B20文件夹下,并将这个文件夹加入头文件包含路径。 打开ds18b20.c在该文件下输入如下代码: #include "ds18b20.h" #include "delay.h"  //复位DS18B20 void DS18B20_Rst(void)         {                        DS18B20_IO_OUT();   //SET PG11 OUTPUT     DS18B20_DQ_OUT=0; //拉低DQ     delay_us(750);                  //拉低750us     DS18B20_DQ_OUT=1; //DQ=1        delay_us(15);                   //15US } //等待DS18B20的回应 //返回1:未检测到DS18B20的存在 //返回0:存在 u8 DS18B20_Check(void)        {          u8 retry=0;        DS18B20_IO_IN();//SET PG11 INPUT           while (DS18B20_DQ_INretry200)        {               retry++;               delay_us(1);        };           if(retry=200)return 1;        else retry=0;     while (!DS18B20_DQ_INretry240)        {               retry++;               delay_us(1);        };        if(retry=240)return 1;             return 0; } //从DS18B20读取一个位 //返回值:1/0 u8 DS18B20_Read_Bit(void)                      // read one bit {     u8 data;        DS18B20_IO_OUT();//SET PG11 OUTPUT     DS18B20_DQ_OUT=0;        delay_us(2);     DS18B20_DQ_OUT=1;        DS18B20_IO_IN();//SET PG11 INPUT        delay_us(12);        if(DS18B20_DQ_IN)data=1;     else data=0;        delay_us(50);               return data; } //从DS18B20读取一个字节 //返回值:读到的数据 u8 DS18B20_Read_Byte(void)    // read one byte {            u8 i,j,dat;     dat=0;        for (i=1;i=8;i++)        {         j=DS18B20_Read_Bit();         dat=(j7)|(dat1);     }                                                return dat; } //写一个字节到DS18B20 //dat:要写入的字节 void DS18B20_Write_Byte(u8 dat)      {                 u8 j;     u8 testb;        DS18B20_IO_OUT();//SET PG11 OUTPUT;     for (j=1;j=8;j++)        {         testb=dat0x01;         dat=dat1;         if (testb)         {             DS18B20_DQ_OUT=0;// Write 1             delay_us(2);                                        DS18B20_DQ_OUT=1;             delay_us(60);                     }         else         {             DS18B20_DQ_OUT=0;// Write 0             delay_us(60);                         DS18B20_DQ_OUT=1;             delay_us(2);                                  }     } } //开始温度转换 void DS18B20_Start(void)// ds1820 start convert {                                                                 DS18B20_Rst();               DS18B20_Check();           DS18B20_Write_Byte(0xcc);// skip rom     DS18B20_Write_Byte(0x44);// convert } //初始化DS18B20的IO口 DQ 同时检测DS的存在 //返回1:不存在 //返回0:存在        u8 DS18B20_Init(void) {        RCC-APB2ENR|=18;    //使能PORTG口时钟        GPIOG-CRH=0XFFFF0FFF;//PORTG.11 推挽输出        GPIOG-CRH|=0X00003000;        GPIOG-ODR|=111;      //输出1        DS18B20_Rst();        return DS18B20_Check(); }  //从ds18b20得到温度值 //精度:0.1C //返回值:温度值 (-550~1250) short DS18B20_Get_Temp(void) {     u8 temp;     u8 TL,TH;        short tem;     DS18B20_Start ();         // ds1820 start convert     DS18B20_Rst();     DS18B20_Check();           DS18B20_Write_Byte(0xcc);// skip rom     DS18B20_Write_Byte(0xbe);// convert         TL=DS18B20_Read_Byte(); // LSB       TH=DS18B20_Read_Byte(); // MSB      if(TH7)     {         TH=~TH;         TL=~TL;         temp=0;//温度为负     }else temp=1;//温度为正                   tem=TH; //获得高八位     tem=8;        tem+=TL;//获得底八位     tem=(float)tem*0.625;//转换            if(temp)return tem; //返回温度值        else return -tem;    } 该部分代码就是根据我们前面介绍的单总线操作时序来读取DS18B20的温度值的,DS18B20的温度通过DS18B20_Get_Temp函数读取,该函数的返回值为带符号的短整形数据,返回值的范围为-550~1250,其实就是温度值扩大了10倍。保存ds18b20.c,并把该文件加入到HARDWARE组下,然后我们打开ds18b20.h,在该文件下输入如下内容: #ifndef __DS18B20_H #define __DS18B20_H //省略部分代码 #endif 关于这段代码,我们就不做多的解释了,接下来我们先保存这段代码,然后打开test.c,在该文件下修改main函数如下: int main(void) {                            u8 t=0;                             short temperature;                Stm32_Clock_Init(9);    //系统时钟设置        uart_init(72,9600);      //串口初始化为9600        delay_init(72);                  //延时初始化        LED_Init();                 //初始化与LED连接的硬件接口        LCD_Init();                  //初始化LCD        usmart_dev.init(72);      //初始化USMART               POINT_COLOR=RED;//设置字体为红色        LCD_ShowString(60,50,200,16,16,"WarShip STM32");           LCD_ShowString(60,70,200,16,16,"DS18B20 TEST");            LCD_ShowString(60,90,200,16,16,"ATOM@ALIENTEK");        LCD_ShowString(60,110,200,16,16,"2012/9/12");                    while(DS18B20_Init())  //DS18B20初始化        {               LCD_ShowString(60,130,200,16,16,"DS18B20 Error");               delay_ms(200);               LCD_Fill(60,130,239,130+16,WHITE);              delay_ms(200);        }                                                                LCD_ShowString(60,130,200,16,16,"DS18B20 OK");        POINT_COLOR=BLUE;//设置字体为蓝色       LCD_ShowString(60,150,200,16,16,"Temp:   . C");        while(1)        {                                  if(t%10==0)//每100ms读取一次               {                                                                                    temperature=DS18B20_Get_Temp();                         if(temperature0)                      {                             LCD_ShowChar(60+40,150,'-',16,0);                         //显示负号                             temperature=-temperature;                                       //转为正数                      }else LCD_ShowChar(60+40,150,' ',16,0);                        //去掉负号                      LCD_ShowNum(60+40+8,150,temperature/10,2,16);         //显示正数部分                            LCD_ShowNum(60+40+32,150,temperature%10,1,16);     //显示小数部分                       }                                          delay_ms(10);            //省略部分代码        } } 至此,我们本章的软件设计就结束了。 35.4 下载验证 在代码编译成功之后,我们通过下载代码到ALIENTEK战舰STM32开发板上,可以看到LCD显示开始显示当前的温度值(假定DS18B20已经接上去了),如图35.4.1所示: 图35.4.1 DS18B20实验效果图  该程序还可以读取并显示负温度值的,只是由于本人在广州,是没办法看到了(除非放到冰箱),具备条件的读者可以测试一下。  
相关资源