tag 标签: dcdc

相关帖子
相关博文
  • 热度 1
    2024-1-31 16:29
    396 次阅读|
    0 个评论
    测量输出电压纹波是评估现代电源转换器和低压降 (LDO) 设备性能的快速方法。但不同的测量方法可能导致输出纹波评估结果相反,如何获得准确的纹波值成为纹波测量中最重要的部分。本设计提示将介绍输出纹波电压测量的实用方法,以检查DC-DC电源转换器的性能。首先,本文将简单解释电压纹波,然后比较传统的长测量回路技术和最小化测量回路技术的尖端和桶身 (tip-and-barrel method) 之间的波形。最后,提供三个实用的测量提示和结论。 1 导言 现代电子应用通常包含嵌入式计算和无线连接功能,这些电路经常具有高脉冲和重负载行为,同时需要低输入电压纹波。因此,新一代的DC-DC转换器将需要具有更快的瞬态响应,并在快速波动的负载条件下保持稳定的输出电压,相较于LDO,输出纹波应该与其一样好,甚至更好。对于评估这些转换器的输出电压纹波,能利用更好的测量方法是很重要的,这种方法可避免将大量的噪声耦合到测量波形上。 在测量输出纹波时,不同的测量方法可能会收集到不同数量的噪声,反应在波形上,从而可能低估转换器的输出纹波性能。图1显示了噪声组合在实际输出纹波上的叠加,这使得测量的输出纹波大于实际的纹波。当使用传统方法,直接将一个普通被动示波器探头连接到输出端时,这是很常见的误测。下一节中将介绍,为什么会出现测量不准确,以及解决这个问题的技术。 图 1: 在测量中迭加的电压纹波和噪声 2 输出电压纹波的测量 图 2: 传统方法与尖端和桶身方法的比较 具有较大测量回路的传统连接方式无法准确地获得开关转换器的纹波电压,因为长地线和尖端插孔可能形成一个回型天线,收集周围环境的噪声。这些噪声迭加到输出电压纹波上,会使所有的测量结果都不正确。 为了获得实际的输出电压纹波,必须在测量设置过程中最小化测量回路。尖端和桶身测量方法是最推荐的准确测量方法之一,以其易于使用和较小的测量回路而闻名。使用此方法,可以轻易地实现较小的回路来收集噪声。 请注意,测量点也可能影响输出纹波测量结果。因此,第二件要考虑的事情是,选择可以最小化噪声收集回路的测量点。通常适当的测量点是在输出电容器焊接垫之间。测量点离电容器越近,在测量过程中收集的噪声就越少。图2显示了尖端和桶身测量方法是在输出电容器上的应用,而传统方法是在输出端上的应用。传统方法的噪声收集回路形成的区域比尖端和桶身方法的区域大得多,这解释了为什么使用前者方法时,波形上会出现大量的噪声。 最后一点也同样重要的是,根据应用选择一个可以接受的示波器采样带宽。有了上述的三个提示,可以很容易达到准确地测量输出纹波电压。 图3显示在不同的示波器采样带宽设置下,输出端的传统长测量回路方法与直接在输出电容器上的尖端和桶身测量方法的比较。结果显示,使用传统的长测量回路方法,波形包含大量的噪声和巨大的纹波,而使用尖端和桶身测量方法,缩短了测量回路,输出波形更加清晰,从而可以测量出准确的输出纹波。 图 3: 20MHz至全 (500MHz) 带宽设置的不同测量方法 3 总结/实用提示 3.1 最小化测量回路 当测量DC-DC转换器的输出电压纹波时,测量回路区域在噪声收集中起着重要的作用。记住始终要考虑最小化回路区域。尖端和桶身方法可以最小化噪声对纹波测量值的影响。 3.2 选择适当的测量点 确保测量的回路区域足够小。通常,选择尽可能靠近输出电容器的测量点,并使连接的阻抗尽可能低。测量点离电容器越近,在测量过程中收集的噪声就越少。 3.3 设定可接受的采样带宽 对于不同的应用,关键负载对于由转换器输出纹波引起的噪声的敏感度可能会有所不同。对于对噪声敏感的应用,如高分辨率模数转换器 (ADC) 或音频应用,建议在全带宽下测量输出纹波,而对于对噪声不敏感的应用,可能选择20MHz的采样带宽。注意,仍需要在全示波器采样带宽下检查背景噪声,以避免不准确地测量输出。 4 结论 使用尖端和桶身方法,对DC-DC转换器进行输出电压纹波测量产生的噪声较少,并且容易实施以获得准确的数据。结合选择对应用程序可接受的示波器采样带宽和适当的测量点,可以轻松实现准确的测量。这对于快速检查大多数DC-DC转换器来说是非常好的方法。 来源 立锜官网
  • 2024-1-19 10:04
    196 次阅读|
    0 个评论
    在DCDC电源电路中,PCB的布局对电路功能的实现和良好的各项指标来说都十分重要。本文以buck电路为例,简单分析一下如何进行合理PCB layout布局以及设计中的注意事项。 首先,以最简单的BUCK电路拓扑为例,下图(1-a)和(1-b)中分别标明了在上管开通和关断时刻电流的走向,即 功率回路部分 。这部分电路负责给用户负载供电,承受的功率较大。 结合图(1-c)中Q1和Q2的电流波形,不难发现,由于电感的存在,后半部分电路中不会存在一个较高的电流变化趋势,只有在两个开关管的部分会出现 高电流转换速率 。在PCB布线时需要特别注意,尽可能减小这一快速变化的环节的面积,来减少对其他部分的干扰。随着集成工艺的进步,目前大部分电源芯片都将上下管集成到了芯片的内部。 了解了高电流转换速率部分后,让我们回到整个功率回路布局来看。以MPS的非常受欢迎的MPQ8633A(B)系列产品为例,这是一款完全集成的高频同步降压转换器可以实现高达12-20A的输出电流,其原理图如下,其功率回路(绿色标注)中包含输入电容,电感以及输出电容等器件。 功率回路也需要做到尽可能地占用较小的环路面积,来减少噪声的发射以及回路上的寄生参数。推荐的PCB布局如图(3)所示。注意点如下: 输入电容就近放在芯片的输入Vin 和功率地PGND ,减少寄生电感的存在,因为输入电流不连续,寄生电感引起的噪声对芯片的耐压以及逻辑单元造成不良影响。 VIN 的管脚旁边至少各有1 个去耦电容 ,用来滤除来自电源输入端的交流噪声和来自芯片内部(倒灌)的电源噪声,同时也为芯片储能。 且电容需要紧挨管脚,两者的间距需要小于40mil 。 功率回路尽可能的短粗,保持较小的环路面积 ,减少噪声的发射。 SW 点是噪声源,保证电流的同时保持尽量小的面积 ,远离敏感的易受干扰的位置,例如FB 等。 铺铜面积和过孔数量会影响到PCB 的通流能力和散热。 由于PCB的载流能力与PCB板材、板厚、导线宽厚度以及温升相关,较为复杂,可以通过IPC-2152标准来进行准确的查找和计算。一般,对于MPQ8633A(B)的PCB来说,需要在VIN(至少打6个过孔)和PGND(至少打9个过孔)处多打过孔,这两处的 铺铜应最大化来减小寄生阻抗 。SW处的铺铜也需要加宽,以免出现限流的情况,导致工作异常。 讨论完功率回路部分,转眼看芯片逻辑电路部分,这部分的PCB布局也是有所讲究的。 结合图(3)和(4)可总结注意点如下: 将BST 电容放置在尽可能靠近BST 和SW 的位置 ,使用 20mil 或更宽 来布线路径。 FB 电阻连接到FB 管脚尽可能短, 减少噪声的耦合。这是芯片最敏感,最容易受干扰的部分,是引起系统不稳定的十分常见原因。需要将其 远离噪声源 ,例如:SW点,电感,二极管等(在非同步buck中,MPQ8633外围无二极管)。如图,RFF、CFF、RFB1、RFB2都尽量靠近芯片摆放。 VCC 电容应就近放置在芯片的VCC 管脚和芯片的信号地之间,尽量在一层,没有过孔 。对于信号地(AGND)和功率地(PGND)在一个管脚的芯片,同样就近和该管脚连接。 AGND和PGND需要进行 单点连接 。 将SS 电容靠近TRK/REF 至RGND 。 将SENSE电容置于输出SENSE线之间, 平行走线 。 PCB layout 中走线和铺铜都尽量避免90 °直角 ,走45°或者圆弧角,特别是在高频信号传输线部分。避免由传输线宽带来的反射和传输信号的失真。 最后,为了方便大家了解自己画的PCB是否合理,可以参考以下简易表格做一个自评: 设计建议 比重(%) 自评打分 备注 器件位置摆放 输入电容靠近芯片放置,去耦电容需要放置在VIN与功率PGND管脚旁边6mil (允许元器件最小间距),最好不要超过40mil。与芯片放置在同一层。 20 电感靠近SW管脚放置。与芯片放置在同一层。 15 使用电源模块,可忽略此条 输出电容两端需靠近电感Vout端和功率PGND放置。与芯片放置在同一层。 15 续流二极管需要靠近电感SW与功率PGND放置。与芯片放置在同一层。 5 使用同步电源芯片,可忽略此条 VCC电容需靠近芯片VCC管脚放置。与芯片放置在同一层。 3 FB电阻需靠近FB管脚放置,走线尽量短。与芯片放置在同一层。远离噪声源。 3 BST RC需靠近SW和BST管脚放置。与芯片放置在同一层。 3 COMP RC靠近管脚放置。 3 若无此管脚,可忽略此条。 大功率网络铺铜 VIN 铺铜 3 SW铺铜在足够通流情况下越短越好。 4 Vout铺铜 3 GND铺铜 4 在最后进行整体铺铜较为便捷。 VIA过孔 GND网络过孔数量≥(Iin+Iout)/200mA 4 VIN网络过孔数量≥Iin/200mA 3 Vout网络过孔数量≥Iin/200mA 3 过孔不打在芯片管脚或器件焊盘上 1 其他弱电信号 EN 电阻尽量靠近芯片摆放,可放置在不同层。 1 SS RC尽量靠近芯片管脚摆放。 1 PG 1 其他(CS,mode等) 1 参考相应规格书 走线 走线以及铺铜都用45°或者圆弧角。 2 电感下方不走线。 1 采样信号平行走线。 1 若无此功能,可忽略此条。 以上表格适用于简单的buck、boost电路的PCB设计,多用单层或者双层板即可。仅供参考,欢迎补充。 来源:mps
  • 2023-11-15 10:05
    171 次阅读|
    0 个评论
    关于DCDC Vout电容,一般情况下我们出于先滤低频再滤高频的考虑会将容量大的电容靠近Vout端放置,即由大到小排列顺序进行布局。 不过个人在对应过的一些项目里,也有硬件人员要求从小到大排列顺序进行布局的。理由是因为电源频率的特性,站在为DCDC去耦的角度来看,应当小电容(去耦半径小)靠近Vout以达到最佳的噪声过滤效果。 我在网上也搜索过,也询问过仿真研究人员,说法是两种都能接受,负载端还需要进行滤波的。 但是,从业将近10年以来,多数是以先滤低频再滤高频去考量电容的摆放顺序的,在这个方面看硬件人员自身的理解去定咯。
  • 热度 5
    2023-7-24 23:01
    454 次阅读|
    0 个评论
    ----------------------------------------- 简介 -------------------------------------- 个人公众号:硬件之路学习笔记 个人公众号:硬件之路 学习笔记 个人公众号:硬件之路 学习笔记 主要内容包括: LDO在实际应用中应该如何选取?输入输出电容如何选取?热性能如何估算?负载应该多大? ----------------------------------------- 正文 -------------------------------------- 一、明确需求并选型 1. 输出电压 根据电路需求明确LDO的输出电压大小,如果后级电路容纳电压范围较大,应当尽量选择常见电压,如3.3V、2.5V等。因为这样的电压等级可以选择固定输出电压的LDO,输出电压更加准确且不需要外部反馈电阻。 2. 输出电流 根据后级电路需求明确LDO的输出电流能力,并在预估的最大电流基础上留有一定裕度,例如需求600mA,可以选择800mA最好是1A输出能力的LDO,这样对提高LDO的热性能以及噪声抑制能力有利。 3. 异常保护能力 根据项目情况确定是否需要多大的过流保护能力,防止短路时烧坏后 级 电路;同时还有热关断等能力也是需要考虑的项。 4. 精度 根据后级电路需求明确LDO的精度,包括整个工作温度范围与整个负载范围内的精度。 5. 外置 使 能 根据项目情况确定是否需要使能控制LDO工作与否。 6.软起动 根据项目情况确定是否需要软起动功能的LDO。 7. 压降 根据前后电路确定LDO的压降大小,并根据LDO数据手册的相关信息选型。 我们假设我们需要一款负载能力大于800mA,输入电压5V,输出电压4V的LDO,电压精度不小于3%;拥有使能开关引脚,由3.3V单片机高低电平控制;拥有软起动功能;其工作温度环境为50℃;有输出异常指示引脚。 筛选后的型号为:TI的TPS7A91,其精度在整个温度范围与负载范围内为1%,输入电压范围1.4~6.5V,输出电压范围为0.8~5.2V;下面我们对其性能进行具体分析并绘制其外围电路。 二、外围电路与参数计算 1. 热性能-参考: LDO的热性能 已知压降为5V-4V=1V;负载电流最大800mA;则最大功率为1*0.8=0.8W; 查看数据手册发现其SON-10封装热阻RθJA为56.9℃/W,则其温升为: 56.9*0.8=45.52;由于其工作环境温度为50℃,则内核温度为: 45.52+50=95.52℃,未超过其最大内核温度125℃,满足要求。 2. 压降 其数据手 册 压降与 负载电流、输入电压关系如下图 :可以看出其在5V输入负载800mA、工作温度50℃下的压降不会超过200mV,而能提供的最大压降为5V-4V=1V,足以满足要求。 3. 外置使能功能 EN引脚提供控制功能,可以接单片机IO口控制LDO的开启、关闭,其低电平电压为0.4V,高电平电压大于1.1V,可以用3.3V的高低电平控制。 4. 软起动 SS_CTRL连接输入引脚且NR/SS并联电容则可以在降低噪声的同时获得软启动功能。根据数据手册,1uF电容可以获得6ms的启动延时。 5. 输出异常指示 PG引脚为输出状态指示引脚,开漏输出,接10k~100k上拉电阻到输出脚。 6. 反馈电阻计算与选取 推荐电阻配比如下表,表中没有我们需要的4V输出的推荐电阻,因此我们需要自己计算,数据手册可以获得VFB=0.8V,假设下电阻R2取10k Ω -1%,上电阻为R1,则Vout/(R1+R2)=VF/R2 计算得出R1=40kΩ,根据 E96-1%电阻阻值表 取40.2kΩ,取40.2kΩ时实际输出电压为4.016V(电阻精度引起的误差后续再写文章具体分析)。 7.原理图绘制 ----------------------------------------- 总结 -------------------------------------- 本片为LDO选型与外围电路计算与处理,下篇为LDO的PCB绘制。 电源之LDO——1.LDO基础知识 电源之LDO-2. LDO的压降 电源之LDO-3. LDO的热性能 电源之LDO-4. LDO的电源抑制比 电源之LDO-5. LDO的噪声 电源之LDO-6. LDO的输出电容 电源之LDO-7. LDO的电流相关
  • 热度 3
    2023-7-20 13:46
    760 次阅读|
    0 个评论
    个人公众号:硬件之路学习笔记 个人公众号:硬件之路学习笔记 个人公众号:硬件之路学习笔记 LDO的电流相关内容包括如下几种,静态电流 IQ 、 接地电流 I GND 、关断电流、 电流限制、防止反向电流 等 。 ①静态电流 I Q 静态电流 IQ 是指当外部负载电流为零时为LDO 的内部电路供电 所 需的电流,比如 电压源、放大器、保护电路 等电路的工作电流。 静态电流由其内部电路、 输入电压和温度决定。 LDO消耗功率PD= ( VIN-VOUT ) * IOUT+ ( VIN* IQ ) 在待机模式中,静态电流甚至会占功耗的百分之五十以上,虽然其值不大,但是在一些低功耗设计中,如智能手表、手环等这个消耗就非常重要了。 ② 接地 电流 I GND 接地电流 I GND是指输入电流与输出电流之差,并且包括静态 电流 I Q 。一般的LDO接地电流在几个毫安级别。 效率 = I OUT/( I OUT+ I GND) × V OUT/ V IN× 100% 以TI的TPS7A91为例,若其输入电压6.5V,输出电压3V,输出电流为5mA,则其 I GND约为2mA,即效率不会高于36%,在低功耗应用中,这个效率非常低下。 ③ 关断电流 关断电流是指输出被禁用时(受LDO控制,区别于负载断开的情况)LDO 消耗的输入电流。输出被禁用时,部分内部电路不再消耗功率,所以关断电流一定小于静态电流。其在低功耗应用中是非常重要的参数。 如下图所示,关断电流与输入电压和温度有关。 ④ 电流限制 一般LDO中都过流关断功能,输出电流到达设定值时就会关断输出。但设定值也会随温度、输出电压等因素有变化,设计的时候需考虑这些因素。如下图1、图2所示。 ⑤ 防止反向电流 由于内部MOS管存在一个体二极管,当特殊情况下Vout大于Vin和内部体二极管正向导通压降之和时,电流可能通过体二极管反向流动,造成LDO损坏。 防止出现反向电流的方法有几种,例如在 Vin与 Vout之间反并联一个肖特基二极管,由于肖特基二极管正向压降远低于内部体二极管的压降,所以反向电流会先通过外部肖特基二极管流向Vin,不会损坏LDO。 也可以在输入端串联肖特基二极管来防止反向电流。 关注公众号:硬件之路学习笔记获得更多文章 点个赞 关个注 转个发
相关资源