tag 标签: 数据采集

相关博文
  • 2025-4-17 09:54
    157 次阅读|
    0 个评论
    探究一下ADAS时空融合数据采集问题
    自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从 感知 到 决策 ,从 规划 到 控制 ,每一个环节都离不开 海量、精准 的 高质量数据支撑 。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战: 多源传感器数据的时间同步难题 、 复杂数据格式的适配 、 测量技术的灵活性不足 、 设备集成周期冗长 等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。 基于技术积累与行业洞察,本文分享一套创新的 ADAS时空融合数据采集方案 。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高效、可靠、可扩展的完整解决方案。 一、方案架构 该方案以 “时空融合” 为核心,构建了 传感器层、数据处理层、存储层和用户交互层 ,如下图1所示: 图1:方案架构 传感器层: 负责采集数据,包括 LiDAR、Radar、RTK 和 Camera 等传感器。这些传感器从 不同维度感知环境 ,获得图像、点云、高精度定位以及被测目标物等信息,为系统 提供原始数据 。 数据处理层: 对传感器采集的原始数据进行处理。通过时 间同步算法(PTP/gPTP) ,使不同传感器数据在时间上对齐,解决多源传感器数据时间同步难题。运用 标定算法 ,对各传感器进行单传感器标定和传感器间标定,确定传感器之间的空间关系。同时,解析不同格式的数据,使其能在系统中统一处理。 存储层: 负责存储处理后的数据。支持 多种存储格式 ,如激光雷达数据可存为 pcd 格式或 rosbag 包,毫米波雷达和 RTK 数据可选择 csv 格式或 rosbag 包,方便不同场景下的数据使用和分析。并且按照传感器类型将数据分类存入单独文件夹,便于管理和查找。 用户交互层(软件界面) :为用户提供操作入口。软件支持 各个传感器数据的可视化 ,方便用户实时查看传感器采集的信息。允许用户对数据采集进行多种配置,如选择存储路径、设置摄像头采集帧数、选择显示时间戳的来源等。还支持对采集环境进行描述,如记录天气和道路状况,为后续数据分析提供更丰富的背景信息。 二、系统搭建 基于方案架构的功能性设计,系统搭建如图2所示,包括 线束改造 , 时间同步 , 传感器标定 和 数据采集 。 图2:系统搭建 1、线束改造 线束改造方面,采用模 块化线束设计 ,针对不同传感器的接口特性进行定制化适配: (1)多协议兼容: 支持以太网(LiDAR)、CAN 总线(Radar/RTK)、ProFrame(Camera)等多种通信协议,通过标准化接口实现传感器即插即用,大幅缩短设备集成周期。 (2)轻量化布局 :基于车辆工程设计,线束走向遵循最短路径原则,减少冗余布线,提升系统可靠性的同时便于后期维护。 (3)抗干扰优化: 采用屏蔽线缆与差分信号传输,降低电磁干扰对数据质量的影响,保障高速率数据(如 LiDAR 点云、Camera 原始图像)的稳定传输。 2、时间同步 方案通过 硬件触发 + 软件校准 实现多传感器纳秒级时间同步,确保时空融合精度: (1)同步基准统一: 以国际原子时(TAI)为时间基准,通过gPTP(通用精确时间协议)与 PPS(秒脉冲信号)实现系统级时间对齐。LiDAR采用gPTP 同步,Camera 通过采集卡 PPS 信号触发,RTK 与 Radar 通过 CAN Combo 的打上时间戳。 (2)外触发机制: 支持LiDAR 外触发Camera 拍摄,可自定义触发频率(10Hz/20Hz/30Hz),确保图像与点云数据严格同步。实测显示,8MP 相机在 30Hz 触发下,帧间对齐时间误差小于 10μs(一般误差在20-30ms)。 3、传感器标定 通过 标定算法 ,建立传感器与车辆坐标系的空间转换关系: 比如单传感器标定中LiDAR2Car,以 车辆后轴中心 为原点,通过标定板采集点云数据,利用 迭代最近点(ICP)算法 计算 4×4 变换矩阵,实现点云到车辆坐标系的转换。 传感器间标定中LiDAR2Camera,利用 同步采集 的点云与图像数据,通过标定板特征匹配,计算外参矩阵(旋转矩阵 R、平移向量 T),重投影误差均值 0.0138m,支持点云投影到图像像素坐标。 4、数据采集 在数据采集环节,配套软件提供 全流程可视化操作 与 高效数据管理能力 : (1)多模态可视化: 实时显示 LiDAR 点云、Camera 图像、Radar 目标聚类及 RTK 定位信息,支持 分屏监控 与 时间戳同步显示, 便于实时校验数据质量。 (2)灵活配置能力: 格式选择: 支持LiDAR (ros bag)、Radar/RTK (ros bag)、Camera (RAW/PNG)等多种格式,满足不同算法开发需求。 环境标注: 自动记录天气(晴 / 雨 / 雾)、道路类型(城市 / 高速 / 乡村)等元数据,生成包含时间戳、存储路径、传感器配置的场景采集文件,提升数据可追溯性。 (3)稳定存储方案: 按传感器类型生成独立文件夹(如 LiDAR_data、Radar_data),避免数据混杂。 三、总结 通过 线束改造 、 时间同步 、 传感器标定 与 采集软件 的 深度协同 ,以上方案可以系统性解决了多源数据采集中的 时空对齐 、 格式适配 与 高效存储难题 。 具体内容已经通过 实车测试验证 ,支持 厘米级空间定位 与 纳秒级时间同步 ,为自动驾驶算法研发、传感器融合验证提供了可靠的数据基石。
  • 2025-3-26 11:38
    0 个评论
    AD9208 AD6688 AD9689高速AD采集卡 采集模块 DA模块 DA发射 FMC
    UD FMC-704 双通道接收+双通道发射FMC模块满足VITA57.1单宽、导冷规范。模块ADC支持进口AD9689-2000、AD9689-2600、AD6688、AD9208或国产GMS018、M2600N、M3000N、SD9689、SD9208采集芯片,DAC支持AD9171/AD9172/ AD9173/AD9174/ AD9175/AD9176/R12GP/SD9174回放芯片,输入支持直流或交流耦合方式,输出仅支持交流耦合。FMC子卡还支持外参考/外时钟、外触发接口,具有板载温度监控等功能。模块采用高质量的时钟和电源,具有优异的性能指标。全部器件选用工业级和以上质量等级的元器件。 应用行业: 通信、卫星、雷达等信号接收、发射 高速数据采集存储、波形生成与回放 医学成像、扫频OCT分析、电子顺磁共振 飞行时间质谱、单光子探测、核物理测量 短脉冲捕获、激光雷达、超声测距、光谱测量、粒子物理、量子技术 零中频IQ系统 测试与测量、半导体测试、科学仪器 产品特点: n 支持2通道,最高采样率3000Msps,分辨率为14bit,可国产化 n AD通道支持交流耦合、直流耦合(只有1个量程档,订货前请沟通)方式 n OCT模式时:对外接口为OCT、K-CLOCK、A-trig、B-trig、RefClk n OCT模式时:输入具有信号调理、直流偏移调理、scan偏移调理功能 n 输入、输出均可配置低通或带通模拟滤波器(订购前请沟通) n 本地参考采用TCXO时钟,频率稳定度:优于1×10 -7 n 支持外时钟或外参考,也可选择为外触发功能 n 具有板载温度监控功能 n 控制线接到FMC的LA端口,兼容ZC706、ZCU102或其它标准FMC规范的载板 n 可以插入到FMC+的载板上工作 UD FMC-704 产品原理框图: 主要技术参数: 产品配置: l ADC/DAC:具有优异的性能指标,参考实测数据 l ADC满量程输入功率:+11dBm~+12.7dBm(不同器件和配置参数不同) l 输入AC耦合频率范围:100~1000MHz、1200~2600MHz可选(订购前请沟通) l 输入DC耦合频率范围: DC~500MHz(订购前请沟通,最多可支持到900MHz) l DAC最大输出功率:-2dBm~+4dBm(不同器件和配置参数不同) l 时钟:HMC7044 + TCXO + VCXO l 外参考/外时钟:AC耦合,0dBm~6dBm l 内参考稳定度:±0.05ppm(常温)~±0.5ppm(宽温) l 外触发(与外参考/外时钟连接器共用):+3.3V或+5V TTL,阻抗10kΩ l OCT模式: Ø OCT通道:DC耦合,阻抗50Ω,默认2.5Vpp量程档,可调偏移范围±1.25V,模拟低通滤波器DC~900MHz Ø K-CLOCK通道:DC耦合,阻抗50Ω,默认2.5Vpp量程档,偏移与OCT通道一致动态可调或固定配置,模拟低通滤波器DC~900MHz Ø A-scan通道和B-scan:DC耦合,阻抗50Ω,电平–3V~+3V, 触发门限可编程范围-1.5V~+1.5V,触发脉冲宽度最小2ns l 对外接口:SMA-KHD,阻抗50Ω l FMC连接器型号为ASP-134488-01(高度3.5mm),与之配套的载板FMC连接器型号应为ASP-134486-01(高度6.5mm) l LED灯:1颗时钟状态指示灯 测试程序: ADC采集测试程序IP DAC发射测试程序IP l获取板载温度测试程序
  • 热度 2
    2025-3-13 10:42
    130 次阅读|
    0 个评论
    全国产2通道3G/14bit采集+2通道12G/14bit回放
    UD FMC-708 双通道接收+双通道发射FMC模块满足VITA57.1单宽、导冷规范,按照全国产化设计。模块ADC支持进口AD9689-2000、AD9689-2600、AD6688、AD9208或国产GMS018采集芯片,DAC支持国产CX6242Q回放芯片,输入采用交流耦合方式。FMC子卡还支持外参考/外时钟、外触发接口,具有板载温度监控等功能。模块采用高质量的时钟和电源,具有优异的性能指标。全部器件选用工业级和以上质量等级的元器件。 应用行业: n 通信、卫星、雷达等信号接收、发射 n 高速数据采集存储、波形生成与回放 n 短脉冲捕获、激光雷达、超声测距、光谱测量、粒子物理、量子技术 n 测试与测量、半导体测试、科学仪器 产品特点: n AD支持2通道,最高采样率3000Msps,分辨率为14bit,可选国产化 n DA支持2通道,最高采样率12000Msps,分辨率为14bit,国产化 n 本地参考采用TCXO时钟,频率稳定度:优于1×10-7 n 支持外时钟或外参考,也可选择为外触发功能 n 具有板载温度监控功能 n 控制线接到FMC的LA端口,兼容ZC706、ZCU102或其它标准FMC规范的载板 n 可以插入到FMC+的载板上工作 UD FMC-708 产品原理框图: 主要技术参数: 产品配置: l ADC/DAC:具有优异的性能指标 l ADC满量程输入功率:+11dBm~+12.7dBm(不同器件和配置参数不同) l 输入AC耦合频率范围:30~1000MHz、1200~2600MHz可选 l DAC最大输出功率:-3dBm~+4dBm l 时钟:LMK04828 + TCXO + VCXO l 外参考/外时钟:AC耦合,+5dBm~10dBm l 内参考稳定度:±0.05ppm(常温)~±0.5ppm(宽温) l 外触发(与外参考/外时钟连接器共用):+3.3V或+5V TTL,阻抗10kΩ l 对外接口:SMA-KHD,阻抗50Ω l FMC连接器型号为ASP-134488-01(高度3.5mm),与之配套的载板FMC连接器型号应为ASP-134486-01(高度6.5mm) l LED灯:1颗时钟状态指示灯 测试程序: l ADC采集测试程序IP l DAC发射测试程序IP l 获取板载温度测试程序
  • 热度 1
    2025-3-13 09:53
    306 次阅读|
    0 个评论
    康谋应用 | 基于多传感器融合的海洋数据采集系统
    在海洋监测领域,基于无人艇能够实现 高效、实时、自动化 的海洋数据采集,从而为海洋环境保护、资源开发等提供有力支持。其中,无人艇的控制算法训练往往需要大量高质量的数据支持。然而,海洋数据采集也面临 数据噪声和误差 、 数据融合与协同 和 复杂海洋环境适应 等诸多挑战,制约着无人艇技术的发展。 针对这些挑战,我们探索并推出一套 基于多传感器融合的海洋数据采集系统 ,能够高效地采集和处理海洋环境中的多维度数据,为无人艇的自主航行和控制算法训练提供高质量的数据支持。 一、方案架构 无人艇要在复杂海上环境中实现自主导航,尤其是完成障碍物检测和跟踪任务,其关键在于对 海面环境的高效感知 。因此,通过集成多种传感器,包括相机、激光雷达、IMU(惯性测量单元)和GPS(全球定位系统),能够采集更全面、更精确的海洋环境数据。但这种系统也会进一步涉及 时间同步、数据传输与存储以及环境适应性 等问题。 基于以上考虑,采用 BRICKplus(工控机)+ETH6000+传感器套件(6*iDS相机+1*LiDAR+1*IMU+1*GPS) 方案架构,如下图所示: 基于 BRICKplus+ETH6000 构建的数采平台,提供12个以太网接口(10*1Gb+2*10Gb)可以有效接入各个传感器,并为后续升级技术架构、接入更多传感器预留更多空间。多传感器产生的数据量巨大,对数据传输和存储提出了高要求,特别是8MP相机6个同时采集。 采用BRICKplus提供大容量(8/16/32TB)高速写入(16Gbit/s)存储硬盘,能够 高效稳定落盘传感器数据 。采用GPS模块,支持 (g)PTP时间同步与定位 。 二、系统搭建 为了更好的 感知无人艇周边环境信息 ,对传感器分布和方式进行了设计和调整,布局如下图所示。该布局可以更有效的应对海面复杂环境下的数据采集。 三、数据采集 在面向无人艇数据采集时,需要使 传感器套件(四类传感器) 能够同时采集数据,并具备 时间同步,实时可视化、存储和回放 等能力。整体软件架构采用 ROS+传感器 集成方式,支持即插即用,使用便捷。 比如在 iDS相机采集链路 上,涉及到 多相机同步采集 的实现难度大、图像数据的实时传输和存储需求高和动态参数调整的灵活性不足等问题。通过定制化开发,采用 ROS+PEAK SDK 方案进行深度集成,实现了多相机同步采集、实时可视化、动态参数调整等功能,灵活 适应海面复杂的采集环境 ,提高了系统的通用性。 四、总结 在 海洋监测 和 无人艇 控制领域,数据采集的准确性和可靠性至关重要。 基于多传感器融合的海洋数据采集系统方案 ,利用高性能的 BRICKplus+ETH6000模块 作为中央处理单元,连接多个传感器,能够实现高速数据传输和同步。 该系统采 用ROS框架与传感器SDK 进行定制开发,实现了多线程数据采集、处理和发布。同时支持配置文件动态加载传感器参数,支持实时调整和优化,进而显著提高了数据采集的同步性、实时性和可靠性,为 无人艇的自主航行和控制算法训练 提供了高质量的数据支持。
  • 2025-2-17 16:24
    312 次阅读|
    0 个评论
    数据采集技术pk:同步采样如何完胜多路复用?
    在工业自动化、科研测量和高端测试领域,数据采集系统的性能直接影响着测量结果的可靠性和系统的整体效能。随着应用场景的日益复杂,从简单的单通道测量到复杂的多通道同步采集,数据采集技术也在不断演进。其中,同步采样和多路复用采样作为两种主流。 一、同步采样 德思特Spectrum的所有采集和生成卡都采用完全同步设计,每个通道都有自己的独立输入/输出放大器和A/D转换器。 同步数字化仪设计:每个通道一个 ADC 和一个放大器 这种设计适用于2到16个通道的卡,甚至16通道16位采集卡(例如TS-M2i.47xx系列)。 德思特SpectrumTS-M2i.47xx系列 与使用多路复用技术的标准卡相比,德思特Spectrum卡的这种更高级的设计具有许多优势: 同步采样采集卡为每个通道提供完整的采样率。 单个通道之间没有相位延迟。 由于独立的输入放大器,相邻通道之间的串扰最小。 可以直接比较采集值,无需插值。 同步采样在每个通道上同时采集一个样本 二、多路复用采样 多路复用采集卡为所有通道提供输入放大器,一个A/D转换器,并且通常只有一个放大器部分。由于多路复用器的限制,它用于慢速采样率,例如10kS/s到1MS/s。 多路复用采样使用单个 ADC 和单个放大器,并以扫描方式在通道之间切换 与同步采集卡相比,这种卡的设计和生产成本更低,因为它上面有更少的昂贵组件。与德思特Spectrum数字示波器等同步采样卡相比,这些卡通常有许多缺点: 1.采集通道之间存在相位延迟(如红色所示)。 2.最大采样率取决于活动通道的数量。 3.数据表上显示的最大采样率只是总和采样率。每个ADC只以 / 的速度进行采样。 4.由于所有信号都通过相同的活动组件,通道之间的串扰增加。 串扰导致以下问题: 信号失真:串扰会扭曲信号,使其失去原有的形状和特征,从而影响测量结果的准确性。 信噪比降低:串扰会引入额外的噪声,降低信号的信噪比,使信号更难被识别和分析。 系统性能下降:串扰会降低系统的整体性能,使其无法达到预期的测量精度和分辨率。 5.多路复用数字示波器通常只能在只有一个通道处于活动状态时以全采样率运行。多路复用通道的最大总和采样率进一步受限。例如,竞争对手的产品可以在1个通道上以2MS/s的速度运行,或者在2个或更多通道上以1MS/s的总和采样率运行,这使得在2个通道模式下每个通道的采样率为500kS/s。 三、结论 综上所述, 同步采样卡在性能和功能方面显著优于多路复用采集卡 ,这一优势在多个关键性能指标上得到充分体现。 德思特Spectrum作为测试测量领域的创新者,其 全系列采集卡采用独特的全同步采样架构,每个通道配备独立的信号链路和A/D转换器,实现了真正的并行处理 。这种设计不仅突破了传统多路复用架构的性能瓶颈,更为高精度、多通道的同步测量提供了理想的解决方案。
相关资源