tag 标签: 爱因斯坦

相关帖子
相关博文
  • 热度 19
    2020-4-23 16:12
    1427 次阅读|
    0 个评论
    爱因斯坦:想象颠覆世界
    爱因斯坦:想象颠覆世界 作为现代物理学的奠基人,他独立创立了相对论,完美解释了光电效应,从而成功为量子理论奠基。当人们称赞他学识渊博时,他却说:想像力比知识更重要。 翻开本书,穿越弯曲的时空,看爱因斯坦如何运用创造性的想象颠覆人类自以为了解的整个世界。 天涯知名作者刘萝卜锅最新作品。点击率破千万的科普力作《文盲正侃时间史》系列第二部。 购买了这本书,你其实买了两本书——人物传记,物理科普。既可以领略爱因斯坦波澜壮阔的一生,又可以八卦他鲜为人知的故事,还可以顺便学学相对论的基本原理,见证现代物理大厦的奠基。 备注:个人因为 刘萝卜锅的科普力作《文盲正侃时间史》才购买该系列第二部。内容偏向于 人物传记 , 总体感觉一般般无干货。
  • 热度 22
    2019-8-1 16:21
    2423 次阅读|
    0 个评论
    黑洞带给人类永恆的神秘感,它是时空的尽头、连光也摆脱不了的「洞」。即使是理论物理学家,也难以用笔墨形容黑洞的模样。要派太空人到黑洞附近去看看也不太可能,航行者1号、2号花了近40年,才刚在不久前越过太阳系边界,但黑洞都在太阳系以外非常遥远的地方。 2017年,来自世界各地超过60个科研单位的天文学家联结起位于地球各大洲的众多个无线电望远镜,持续地观察M87星系。这个名为事件视界望远镜(Event Horizon Telescope,简称EHT)的无线电望远镜网络,终于直接拍摄到了人类史上首张黑洞「照片」,并于2019年4月10日全球同步发表。 图1 M87星系。(Image courtesy of ESO) 黑洞是什么? 黑洞是爱因斯坦于1915年发表的广义相对论的方程式的一个数学解。爱因斯坦发现,在我们身处的宇宙中的任意点上,加速度与重力并不能被区分开来,是为「等效原理」。利用等效原理,加上光速不变假设,爱因斯坦推导出一组十式的方程组。广义相对论取代了牛顿重力定律(或者可说是牛顿重力定律的更新版本),只要知道时空某处存在多少质量,就能够利用那十条方程式描述时空的演化。 重力的特性是它只会互相吸引,不像电磁力那样既能相吸亦能相斥。因此,质量越多,重力就越强;重力越强,就更轻易吸引更多物质。物质如果要摆脱更强的重力,就得付出更多能量。例如,在一颗小行星上,轻轻一跳可能就已足够摆脱其重力;在地球上,却必须利用火箭加速至最少每秒11.2公里,才能飞进宇宙空间。 早在爱因斯坦以前,物理学家就曾经想像过一颗质量非常强高的恆星,其重力强大到必须跑得比光更快才能逃逸。牛顿重力理论中没有质量的东西不会被重力影响,而光线究竟有没有质量在当年也是未解之谜,他们想像「如果」光线也会被重力「拉」回恆星表面的情况,就把这种想像中的恆星称为「暗星」。 图2 画家想像下的黑洞。(Image courtesy of ESO, ESA/Hubble, M. Kornmesser/N. Bartmann) 广义相对论中的重力却能影响一切事物。所有物质,哪管有没有质量,全都会被重力吸引。天体物理学家发现,当一颗质量巨大的恆星耗尽核反应燃料时,抵抗自身重力的压力就会在一瞬间消失,恆星会向内坍缩、反弹,引发超新星爆发。超新星爆发后剩下来的核心质量如果足够高,就会变成一个逃逸速度比光速更高的区域。我们叫它做黑洞。 黑洞不会发光,而且大多数黑洞体积又不大、离地球又远(幸好)。因此,望远镜必须造得够大,才能收集更多光线和提高解析度。以人类的科技,要探测上述由恆星死亡超新星爆炸所创造出来的细小黑洞(尺寸大多比地球上的城市更小),仍然遥不可及。不过,宇宙间有些黑洞尺寸却巨大得难以置信。天文学家发现,在每个星系的中心,都存在一个极其巨型的黑洞,质量达到几百万个太阳,称为超大质量黑洞。天文学家认为这些星系中心的黑洞由远古细小黑洞互相结合而成的,它们同时也影响著星系的演化过程。 星系M87(Messier 87)的中心也有一个超大质量黑洞。它距离太阳系约5千5百万光年,半径约为37光时。M87的质量是太阳的65亿倍,从地球上观察,它的事件视界(event horizon)只有大约16微角秒。从地球看,这等于月球上太空人的拳头大小。事实上,今次EHT的天文学家拍摄的并非M87的事件视界,而是在事件视界外面约40微角秒大小的吸积盘(accretion disk),叫做「黑洞的影子(black hole shadow)」。 图3 事件视界望远镜网络。(Image courtesy of EHT; from Jean-Pierre Luminet, La Recherche, Vol. 533 (March 2018),https://arxiv.org/abs/1804.03909) 事件视界望远镜(EHT)是什么? 根据简单光学定律,望远镜越巨大、观测使用的波长越短,解析度也越高。人类所造的地面望远镜之中,无线电望远镜建造相对容易,因此普遍来说都较可见光望远镜巨大。另一方面,无线电受大气扰动干扰的影响亦较可见光为低。EHT使用的无线电波段为1.3毫米,经过计算,我们需要的望远镜尺寸是⋯⋯地球直径(即大概13,000公里)! 然而,即使是地球上最巨型的无线电望远镜,例如美国的阿雷西博望远镜(Arecibo Telescope,直径305米)、中国的500米口径球面无线电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,简称FAST,直径500米),以及俄罗斯的科学院无线电望远镜-600(Academy of Science Radio Telescope – 600,简称RATAN-600,直径600米)等等,也远远不够大。怎么办呢?总不能把整个地球改建成一支望远镜吧?幸好,物理学家早就发展出一种技术,叫做甚长基线干涉测量法(Very-long-baseline Interferometry,简称VLBI)。VLBI技术利用光线的波动特性,把不同地点的光线讯号互相重迭,从而构成更光亮、解析度更高的影像。 世界各地都有很多无线电望远镜,因此天文学家组成了一个VLBI望远镜网络,用来加强所拍摄的影像的光度和解析度。EHT就是这个VLBI网络的一部分,专门拍摄M87。过去两年间,EHT收集到了足够的光线,利用干涉分析建构出一幅解析度达20微角秒、足以分辨出M87的黑洞影子的照片。2019年4月10号,我们终于能够一窥黑洞的庐山真面目! 图4 EHT首张M87的无线电黑洞影子照片。(Image courtesy of EHT) 不发光的黑洞为什么可以看得到? 咦,不是说过连光也不能离开黑洞吗?为什么还会有来自黑洞的讯号? 黑洞本身不会发光(理论上黑洞会放出所谓的霍金辐射(Hawking radiation),但这超出本文讨论范畴,我在以往文章中已经讨论过)。然而,正被黑洞吸入的星际物质、甚至是被黑洞强大重力扯得支离破碎的恆星碎片,会一边加速至极高速度、一边落入黑洞之中。这些物质构成一个温度极高的吸积盘,会在落入黑洞之前释放出大量辐射。EHT观察的就是这些刚好在黑洞边界发射出来的光。 顺带一提,黑洞边界是时空中的资讯能够传播的最后界线,跨越了黑洞这道边境的任何资讯都不可能被黑洞外面的宇宙所探知。因此,黑洞边界又称为事件视界,象徵宇宙中一切事件的尽头。EHT的名称也就很明显了:事实上它拍摄的并非黑洞「本身」,而是事件视界外的黑洞影子。 爱因斯坦的预言 既然这是人类史上首张黑洞照片,为什么我们会知道M87中心有个黑洞? 另一方面,我们观察到来自M87的X射线高能量喷流(jet)。天体物理学模型指出,当吸积盘的物质落入黑洞时,会有一部分物质被高速从黑洞两极抛走,形成喷流。喷流中的物质温度极高,加上其速度非常接近光速,因而放出X射线。这些来自M87的X射线能量间接指出其中心必定存在一个能提供物质如此强大能量的能源。根据人类已知物理学,黑洞是唯一解释。 科学与其他学问的一个分别是,我们能够利用科学定律来作出极其准确的量化(quantitative)预言。爱因斯坦广义相对论的预言已经被实验和观测所一一证实,包括位于较强重力场中的时间流逝速率相对较慢(全球定位系统人造卫星必须使用广义相对论作岀修正,所以我们的手提电话已是明证)、空间会被重力场扭曲(人造卫星已经测得地球附近空间扭曲程度与相对论预言一致)、2015年直接探测到去两个黑洞碰撞结合所释放出的重力波(重力波观测亦为黑洞存在的证据)。 EHT这张照片只是人类直接观察黑洞的第一步。虽然这照片与想像中的电影剧照有颇大出入,却是爱因斯坦相对论的另一个明证。谁知道未来人类科技会进步到何等程度,带我们看到什么? 图5 电影《星际启示录(Interstellar)》显示的黑洞。由该电影科学顾问、2017年诺贝尔物理学奬得主、理论天体物理学家基普・索恩(Kip S. Throne)利用广义相对论方程组画出。
  • 热度 23
    2013-1-6 15:10
    995 次阅读|
    1 个评论
     宇宙膨胀理论是爱因斯坦最著名的理论之一,这一理论也叫宇宙大爆炸理论,基于这一理论科学界解释了不少科学现象,但这一理论的质疑声也不绝于耳,但近日,来自英国的科学家再次证明了这一理论的准确性。     英 国科学家威尔-波斯富街在曼彻斯特国家天文学会议的上提出,宇宙正在加速膨胀,并且其结构内的星团也随着在变大。波斯富街以遥远的星系为突破口从而证明了 宇宙在数十亿年前就开始膨胀,并且膨胀速度越来越快。在1916年,爱因斯坦通过观察星系之间的距离,发现了星系间正在产生一些神秘的空间,由此断言,在 5至6亿年前,宇宙便在开始加速膨胀,两者的发现惊人的吻合。   波斯富街说:"我们的研究模型是根据广义相对论设置的,宇宙的运动行为和我们所预期的一模一样,其膨胀速度极其内部结构的增长也和广义相对论完全吻合。"   来自美国宇航局的贝斯-里德研究院补充道:"我们已经知道在广义相对论在太阳系内完全适用,现在我们确定了它在100万光年内的适用性,我们正在研究超越爱因斯坦研究的一亿倍距离之外,但有迹象表明,广义相对论仍然是成立的。"
  • 热度 31
    2011-12-30 16:05
    5406 次阅读|
    14 个评论
    李淼是中国科学院理论物理研究所的研究员, 曾任中国台湾大学和中国科学技术大学客座教授。他主要研究量子场论、超弦理论以及宇宙学, 最近致力于研究超弦中的黑洞物理、超弦宇宙学以及暗能量。   如果OPERA 实验的结果得到其他实验的验证,相对论,这个已经被检验了无数次的物理学基础之一将被动摇,后果和影响将是巨大的。   撰文李淼   2011 年9月22 日下午,意大利格兰· 萨索国家实验室的 OPERA(Oscillation Project with Emulsion-tRacking Apparaturs 的缩写)项目组宣布,他们探测到的中微子速度超过了光速,同时将一篇学术论文发布在著名学术论文网站arXiv 上。   意大利格兰萨索国家实验室底下的中微子探测器。   在文章中,项目组谨慎地表示,他们反复检查了所有可能出现的误差,但还是解释不了中微子为何会比预计时间早到了约60 纳秒(中微子是从欧洲核子研究所发出,目的地是意大利格兰· 萨索国家实验室,两地相距约730 千米。通常来说,中微子应该和光同时到达),因此只得将测量结果公之于众,希望整个物理学界帮助他们找出可能出现的错误。   一纳秒是十亿分之一秒,光速约为每秒30 万千米。一纳秒内,光可以前进30 厘米,由于中微子速度和光速差不多,因此中微子在60 纳秒内比光多跑了18 米,说明中微子的速度比光速快了四万分之一倍。这个相对增速并不大,但恰好在OPERA 实验可以探测到的范围内。如果将数据统计和实验仪器的不确定性加起来,OPERA 实验的误差在10 纳秒左右,所以60 纳秒这个数字,绝不能简单地用误差来解释。   如果该结果得到验证,相对论,这个已被检验了无数次的物理学基础理论将被动摇,后果和影响将是巨大的。所以,物理学家在采取谨慎态度对待这个实验结果的同时,还怀着强烈的期待——不论这期待是什么。    不可思议的实验   我们来回顾一下OPERA 实验的过程。首先,欧洲核子研究所的超级质子同步加速器产生出4 000 亿电子伏的质子流。这些质子经过一段管道后,击中一块长为两米的石墨,产生κ介子和π介子,这些介子继续前行一千米,在此过程中衰变成μ子和μ子型中微子。接着,所有这些粒子与一个铁-石墨靶碰撞,除了中微子外,其他粒子都会被阻挡。   由于中微子能穿过任何物体,因此它们直接飞往格兰· 萨索国家实验室。同时,研究人员会测量μ子的数量,所得结果将和格兰· 萨索实验室测量到的中微子数相比较。中微子从欧洲核子研究所到格兰· 萨索实验室的旅行都是在地壳中进行,距离是732 千米。这个距离是用全球定位系统(GPS )来测量的,两地时钟也是通过这个系统来校准。OPERA 项目组称,距离的测量误差不会超过20 厘米,时钟的误差也不超过10 纳秒。通过长达半年的数据分析,项目组终于宣布了惊人的初步结果。   把初步结果公布在arXiv 上之后,OPERA 项目组又要求欧 洲核子研究所提供新的质子流,因为此前的质子流太长,这会引起不必要的误差。新的质子流不到一米长,相当于光速运行 3纳秒的距离,远短于60 纳秒,这就排除了最可能出现的误差。进行了半个月的重复实验后,研究人员探测到20 个中微子,结果中微子的到达时间仍提前了62.1 纳秒。同时,不同的研究人员还重新分析了此前的数据,得到的结果是,中微子的到达时间平均提前了57.8 纳秒,这与重复实验的结果是吻合的。经过近两个月的细心检查和重复实验,OPERA 项目组把9月23 日的那篇文章加长了10 页后,终于正式向学术期刊投稿了。   质疑   尽管经过长时间的数据分析和重复实验,OPERA 项目组自认已经排除了所有可能出现的误差,但在学术界,大多数科学家仍对OPERA 实验持怀疑态度。要判断这个结果到底有多大可信度,我们首先要考虑它是否与以前的高能物理实验相矛盾。   在此之前,科学家就做过与中微子速度相关的实验。比如,美国费米实验室就曾做过这类实验,给能量在300 亿到2 000 亿电子伏之间的中微子定一个速度范围——不论低于还是超过光速,它们与光速的速度偏差都不应该超过两万五千分之一(也就是说,这是误差允许的范围)。这个范围与OPERA 实验并不矛盾,因为在该实验中,中微子的速度只超过光速四万分之一。不过在2007 年,费米实验室的一个研究组在实验中发现,30 亿电子伏的中微子的速度似乎比光速快了两万分之一倍,明显超出上述速度范围,但在当时,这个结果没有引起物理学界的重视,主要原因是误差太大,实际结果可能低于光速。   看上去直接与OPERA 实验相矛盾的,是在1987 年针对一颗超新星的观测实验。这颗超新星被命名为1987A ,当时,科学家观测到这颗距离我们近17 万光年的超新星的同时,也观测到了大约20 个中微子。比较光子和中微子到达地球的时间,研究人员得出的中微子的速度范围是,与光速的偏差不会超过五亿分之一,这远小于四万分之一,因此与意大利实验相矛盾。但是,该观测实验却与OPERA 实验有几个不同之处:第一,超新星辐射出的中微子中,绝大多数是反电子型中微子;第二,地球上探测到的中微子的能量只有1 000 万电子伏,远远小于 OPERA 实验探测到的中微子能量——后者的能量范围是140 亿到400 亿电子伏;最后,超新星发出的中微子绝大多数是在太空中旅行,而OPERA 的中微子则是在地壳中前行。因此,超新星观测实验与OPERA 实验的结果是否真的矛盾,还值得商榷。   在网上,9月23 日的那篇论文已经被引用160 多次,而引用该论文的文章,半数以上都是研究超光速中微子相关问题的。这些文章中,多数是用不同的理论来解释中微子的超光速现象,少数是质疑这个实验结果的。而在众多质疑的文章中,美国科学家安德鲁· 科恩(Andrew Cohen )和1979 年诺贝尔物理学奖得主谢尔顿·格拉肖(Sheldon Glashow )的文章最引人注意(参见本期前沿扫描《超光速中微子》)。他们指出,根据弱相互作用理论,如果中微子的速度超过真空光速,中微子会辐射电子和正电子,损失能量。不论欧洲核子研究所发出的中微子起始能量有多大,到达格兰· 萨索的中微子的能量都不能超过125 亿电子伏,这显然与OPERA 的测量结果相矛盾。当然,在科恩和格拉肖的计算中,他们假设了中微子的能量与速度存在依赖关系,很多人认为,如果改变能量与速度的依赖关系,中微子也许就不会损失能量。但我们的计算发现,不论如何改变这种的依赖关系,中微子都不可避免地会损失很多能量。   为了规避“科恩-格拉肖问题”,有些极端的理论物理学家提出,超光速中微子如果发生弱相互作用,能量不再严格守恒,取而代之的是一种新的能量守恒定律。在这种新的守恒定律中,中微子的能量要乘以一个“破坏因子”,这样就彻底规避了“科恩-格拉肖问题”。这种观点看上去很有吸引力。   当然,更多的物理学家选择无视OPERA 实验的结果,例如 1979 年诺贝尔物理学奖得主史蒂文·温伯格(Steven Weinberg)说: “这个实验令人印象深刻,但更多的粒子并没有超光速,而涉及中微子的实验通常又极端困难。就像有人说,在花园深处有一些小仙女,但我们只能在漆黑和有浓雾的夜晚才能看到。”   我也在很多场合谈论过中微子超光速现象,但我也一直表示,这个结果正确的可能性并不高,即使OPERA 项目组做了重复实验后,我也没有彻底改变我的态度。因为如果这个不可思议的结果被证实,将会给物理学界带来一场“大地震”。   修改相对论?   很多人都知道,爱因斯坦相对论,特别是狭义相对论,是建立在光速不变基础上的。不论我们以什么速度匀速运动,我们测得的光速总是一样。另外,无论光源相对我们做什么运动,我们测得的光速也是一样。测量光速是否变化的一个著名实验是迈克尔逊-莫雷实验。这个实验很简单,让光从一个光源发出,经过两个不同路径后,到达同一个地方,然后发生干涉。   如果光速与方向有关,并与我们的运动速度有关,那么当我们转动迈克尔逊干涉仪,就会看到干涉条纹的移动,或当我们运动起来,也会看到干涉条纹的移动。我们知道,地球相对太阳运动,运动速度大约是每秒30 千米,所以冬季和夏季地球有一个每秒60 千米的相对运动速度。但在实验中,科学家并没有发现这个相对运动速度,也就是说光速与地球的运动无关。   19 世纪末,迈克尔逊和莫雷所做的实验得出了光速变化的范围:不会超出每秒8千米,与30 万千米相比,不到三万分之一。到了本世纪,光速的精确度已经达到10 -17 。现在,光速已成为一个标准,被定义为每秒299 792 458 米。又由于*原子钟非常精准,一天的误差也不会超过一纳秒,因而我们可以用光速和时间来定义距离。在OPERA 实验中,欧洲核子研究所到意大利格兰·萨索实验室的距离,就是通过全球定位系统利用光速来测量的。   因此,爱因斯坦并没有错,至少,光速是不变的。那么我们就会问,不是说在相对论中,光速是一个不可超越的极限吗?回答这个问题并不容易。原则上,相对论并没有排除超越光速的可能。超光速的粒子通常被称为快子,相对论告诉我们,快子的行为很古怪,速度越高,能量越低。这种古怪特性加上量子力学,使得人们认为快子不可能存在,因为量子力学允许快子不断地辐射能量,在快子辐射能量之后,它的速度反而加快了。这个现象与不稳定性有关,也就是说,如果存在快子,那么快子会使我们生活的空间很快发生爆炸。   在OPERA 实验中,超光速中微子并不简单地意味着它们就是快子。事实上,项目组在4个不同的能量水平上测量了中微子的速度,结果发现中微子的速度是不变的,也就是说,在140 亿到400 亿电子伏这个能量范围,中微子都超光速,而且超出的部分都大约为光速的四万分之一。快子的能量和速度的关系肯定不是这样的。另外,1987A 超新星的中微子能量更低,速度也更低,这也和快子的行为矛盾。   那么我们能得出什么结论?因为快子是相对论允许的,而中微子不是快子,所以,尽管我们肯定光速不变,但相对论还是错了;所以,如果一年后新的实验验证了OPERA 实验的结果,我们可以肯定地说,相对论必须修改!   OPERA 实验的另一个结果也非常奇特。过去三年中,研究人员在不同的季节统计了中微子速度,速度也与季节无关。也就是说,中微子速度虽然超出光速,但和光速类似,它与季节也就是与地球的运动无关。如果我们假定,一个理论中存在两个不变的速度,这个理论中的时空将是特别怪异的。例如,我们可以利用光速不变定义距离,也可以用中微子速度不变定义距离,但在不同的参照系中,这样定义出来的距离并不一致!这个例子说明,长度的定义不绝对。而比长度定义不绝对更令人惊骇的是,事件这个概念也不绝对了。   总之,中微子超光速的结论很可能经不起其他实验的检验,但是,万一通过了检验,我们的时空观就将彻底改写,物理学的基础理论之一粒子物理也将改写。甚至,爱因斯坦的另一个著名理论——万有引力的时空弯曲理论同样会改写。   http://tech.sina.com.cn/d/2011-12-30/10426585890.shtml  
  • 热度 24
    2011-7-25 16:49
    8138 次阅读|
    12 个评论
    据香港文汇报报道,爱因斯坦被誉为现代物理学之父,他其中一个著名理论,就是没有任何物质的运动可以超越光速。围绕有关基础,学界多年来于科研上更取得不少进展。今年,香港科技大学物理学系助理教授杜胜望及其团队,更就有关理论取得重大实验突破。       他们透过电磁诱导透明技术,将单一光子(Photon)中的光前驱波分离,并首次证明任何光子都不能超越光速极限,确切证实爱因斯坦的理论。是次实验结果,也基本推翻透过光子作时间穿梭的理论假设,未来要制作任何时光机,亦只能另辟蹊径。     光速每秒近30万公里,即可环绕地球7个圈,根据爱因斯坦理论,那一直被视为极限速度。约十多年前科学家一度发现,由一大群光子组成的光脉冲,能出现超光速“视觉效应”,虽然那未足否定爱因斯坦理论,但亦令不少人科学家寄望,尝试以单光子超越光速并传递信息及时间穿梭的可能性。     为探索有关问题,科大杜胜望与其队伍花了3年时间研究,终在今年得出成果,于上月出版的《物理评论快报》发表作焦点介绍。在实验中研究人员先产生一对单光子,并控制其形状,引导其中一个光子通过一团激光冷却的铷原子,利用电磁诱导透明效应,成功将光前驱波(Optical precursor)从单光子中“拆开”。     实验进一步发现,光前驱波就是单光子速度最快的“前驱”部分,而光速移动则是其极限,也就是说,单光子根本无法超越光速,为其速度写下结论。是次实验首次为爱因斯坦相关理论提供充分证据,也说明在物理现象中,结果不能先于原因出现。     杜胜望指,若从应用层面看,研究结果主要有两个意义:一是证明了单光子不能超越光速,从而减低其它实验走错方向的机会,例如时间穿梭的研究,将不可能透过光子来实现;二是为未来信息传输加密带来新启示,即如通讯只透过单光子进行,过程中只要一有干扰或接触,就会立刻被发现。     08年加入科大的杜胜望又表示,由于单光子的研究不易控制,现时世界上专家并不多,他们的研究可说是“走在世界最前”,未来也面对极大挑战。虽然有关实验大部分仪器均是自行组件,但3年亦已耗资达300万元,资金分别来自科大及捐赠,但去年起亦开始获研资局拨款,继续研究单光子特性。     科大物理学系助理教授杜胜望团队,首次透过实验证实单一光子不能超越光速极限。香港文汇报记者梁祖彝 摄
相关资源