tag 标签: 反射

相关博文
  • 热度 7
    2023-5-31 10:15
    975 次阅读|
    0 个评论
    IC之间的信号线为什么要接一个小电阻?至少有下面5条作用。
    在电路设计和 PCB 布线中,常常会在 IC 之间的信号线上接一个小电阻,这是为什么呢?这篇文章将从几个方面来分析这个问题。 一、防止反射 当信号线上的电压发生变化时,信号会以一定的速度从信号源向信号终端传输,这个速度是受到信号线的长度、传输介质的特性以及电路特性的影响。当信号线长度超过一定范围时,信号在传输过程中可能会发生反射。 反射指的是信号在信号线上的传输过程中,由于电阻、电感等因素的影响,导致部分信号反弹回去,与原信号叠加在一起形成衰减、畸变等现象。这会对信号的传输造成不良影响。 在电路设计中,为了避免信号的反射,常常会在信号线上串联一个小电阻,这个电阻被称为终端电阻。终端电阻可以通过阻抗匹配的方式消除反射,并提高信号的传输质量和速度。 二、抑制噪声 在电路中,信号线会受到各种噪声的影响,例如电源噪声、地噪声、 EMI 干扰等。这些噪声信号会通过信号线传输到电路的其他部分,导致电路的工作不稳定、误差增大等问题。 为了抑制噪声的影响,可以在信号线上串联一个小电阻,这个电阻被称为串联电阻。串联电阻可以通过阻抗匹配的方式降低噪声的传输效果,并减少信号线受到的干扰。 三、控制电流 当信号线上的电压发生变化时,信号线中会产生电流。这个电流会对电路的其他部分产生影响,例如引起电路的干扰、噪声等问题。 为了控制电流的大小,可以在信号线上串联一个小电阻,这个电阻被称为串联电阻。串联电阻可以限制电流的大小,从而控制信号线对电路的其他部分产生的影响。 四、防止短路 当信 号线与其他线路或元件相连时,可能会出现短路的情况。这会导致电路的短路保护电路触发,使电路停止工作。 为了避免短路的发生,可以在信号线和其他线路或元件相连的地方串联一个小电阻,这个电阻被称为串联电阻。串联电阻可以限制电流的大小,从而防止短路的发生,保护电路的正常工作。 五、保护 IC 在电路中, IC 是一个非常重要的元件,其功能的稳定性和寿命直接影响整个电路的性能和寿命。为了保护 IC ,常常会在 IC 引脚和其他线路相连的地方串联一个小电阻,这个电阻被称为串联电阻。 串联电阻可以限制 IC 引脚上的电流和电压,从而保护 IC 不受过大的电流和电压的影响。这可以延长 IC 的寿命,提高电路的稳定性和可靠性。 综上所述, IC 之间的信号线上接一个小电阻的目的有很多,包括防止反射、抑制噪声、控制电流、防止短路和保护 IC 。这些措施都是为了提高电路的稳定性、可靠性和性能。在实际的电路设计中,需要根据具体的情况选择合适的电阻值和接法,以达到最佳的电路效果。 关注公众号“优特美尔商城”,获取更多电子元器件知识、电路讲解、型号资料、电子资讯,欢迎留言讨论。
  • 热度 7
    2018-4-14 11:50
    8514 次阅读|
    1 个评论
    信号反射的几个重要体现及电路设计
    本文要点: 1,介绍信号分列反射的具体表现; 2,结合具体电路分析。 信号沿传输线向前传播时,每时每刻都会感受到一个瞬态阻抗,这个阻抗可能是传输线本身的,也可能是中途或末端其他元件的。对于信号来说,它不会区分是什么,信号所感受到的只有阻抗。如果信号感受到的阻抗是恒定的,那么他就会正常向前传播,只要感受到的阻抗发生变化,信号都会发生反射。这些因素可能包括过长的走线,末端匹配的传输线,过量的电容或电感及阻抗失配。 反射会造成信号过冲 overshoot 、下冲 undershoot 、振铃 ringing 、边沿迟缓也就是阶梯电压波。过冲是振铃的欠阻尼状态,边沿迟缓是振铃的过阻尼状态。当信号的第一个波峰超过原来设定的最大值。过冲是指信号跳变的第一个峰值或谷值,它是在电源电平之上或参考地电平之下的额外电压效应; 边沿迟缓我们也成为台阶,回勾现象,其危险主要是会造成误触发。 下冲是指信号跳变的下一个谷值或峰值。过冲与下冲都是不利的因素,过大的过冲电压经常长期性地冲击会造成器件的损坏,如上图所示。严重的下冲会超过接收器件的门限而导致电路的逻辑错误。 如果信号在驱动器和接收器之间来回多次反射,就会产生振铃现象,这增加了信号稳定所需要的时间,从而也影响了系统稳定的时序。 细节处如下图, 电路设计 Tips : 一般做电路设计中,如果时钟信号链路比较长,会在时钟输出信号上串接一个小电阻,比如 22 欧姆或者 33 欧姆。 至于为什么,很多成熟设计都是这么做,算是一个经验设计方法。实际上, 其实这个小电阻的作用就是为了解决信号反射问题。而且随着电阻的加大,振铃会消失,但你会发现信号上升沿不再那么陡峭了,串联电阻是为了减小反射波,避免反射波叠加引起过冲。这个解决方法叫阻抗匹配,一定要注意阻抗匹配,阻抗在信号完整性问题中占据着极其重要的地位。
  • 热度 4
    2018-3-10 17:09
    5788 次阅读|
    0 个评论
    信号完整性基础-反射是如何产生的?续
    好吧,春节过完,博客接着更新了。。。。 给大伙拜个晚年:祝大家新年快乐,步步为营,分别在不同的地方看到了两组图片挺有意思的,拿出来,分享博大家一乐。 每逢春节胖三斤 扯远了。。。重回正题,更新信号完整性方面的基础,年前手头的项目耽搁了。 有小伙伴看完之前的文章说,不够深入浅出,想了想,再写一篇,力图简单易懂的说明白反射是如何形成的。 要说明白反射,需要涉及前文提到过阻抗及匹配的概念,形象来说,如下图,如同拼图游戏一般,红色方块太大,或者太小都放不进空格中,会产生信号完整性问题;只有匹配上,才能正好放进去,没有反射。 具体的,前文说到了特性阻抗,我们熟知实际电路中最大功率传输定理是关于负载与电源相匹配时,负载能获得最大的功率。迁移到高速电路中,其表现是: 激励电路特性与传输线特性极大地影响了从一个装置传送到另一个装置信号的完整性。 具体来说,在高速电路中要想把信号能量从源端全部有效的传送到负载端,必须使传输线特征阻抗与信号的源端阻抗和负载阻抗匹配,否则信号会发生反射,导致信号波形的畸变等一系列问题。 之前,还有在网上读到其他大牛写的文章,对阻抗及反射的关系写得很形象易懂,大概是说,将电流类比于水流,而将水位的高度看作为电压,这跟我们初高中接触的物理知识是一致的。水流的速度看作是信号的频率,假设,河道中水的宽度为阻抗,那么河道宽阻抗必然越小,这应该很好理解,我们的走线也是一样, 走线越宽,阻抗越小 。 所以,对于河道,如果水流突然流进了窄道,水道变窄,那么阻抗会增大。这个时候,如果水流速度很快,也就是信号频率很高,那么试想是不是会溅起水花,如下图,这就是反射。而如果,河道由宽到窄,那么小沟中水位想想肯定是会抬高的(去过苏杭的运河游船的应该是很清楚这一点),说明这就产生了正反射,电压变高了。 反之,如果由河道进入了大江,江明显更宽,那么此时阻抗会变小,同时水位也会变低,此时就会产生负阻抗啦,叠加后电压就低了。 通过上面的类比,我们再看下面的就很 easy 了。 反射就是在传输线上的回波。信号功率 ( 电压和电流 ) 的一部分传输到线上并达到负载处,但是有一部分被反射了,如下图所示。源端与负载端阻抗不匹配会引起线上反射,负载将一部分电压反射回源端。如果负载阻抗小于源阻抗,反射电压为负,反之,如果负载阻抗大于源阻抗,反射电压为正。布线的几何形状、不正确的线端接、经过连接器的传输及电源平面的不连续等因素的变化均会导致此类反射。 好吧,形成的原因,大概就到此,感兴趣推导的公式的伙伴们可以推到一个3-5次反射的情况,理解就更深入了。
  • 热度 14
    2015-2-5 17:30
    1551 次阅读|
    0 个评论
    作者:陈德恒   一博科技高速先生团队成员   欢迎关注纯技术自媒体微信公众号:一博_看得懂的高速设计   问:穷人思维和富人思维有什么区别?   答:我拿到一2.4mm的20层板给它的28G信号通道做优化,将信号安排在最后几层,花了很久的时间在孔径,pad,antipad,taper,孔距,地孔数量上做平衡,在最后为20mil长的stub需不需要背钻做整体评估时,客户拍拍我的肩膀说:“小陈呐,别那么麻烦了,用镭射孔走第三层嘛,过孔短,stub也短”。   真实故事改编,逗大家一乐。   回顾上一期问题,平时大家想到减小反射的方法大多在匹配传输线阻抗,源端串阻,末端端接,进一步的还有容性负载补偿。   除了减小反射本身,是否还有别的方法呢?有,避开谐振点。   下面是一个简单的DDR3时钟一驱四的拓扑,时钟频率为500MHz:   CPU到第一片颗粒长度为1500mil,颗粒与颗粒之间的长度为500mil,这时接收颗粒的波形如下:   拓扑没有没有问题,末端也用匹配电阻上拉了,负载也并不多,为什么裕量那么小?   回想一下前几节说的,500HMz的时钟信号频域分量主要在500MHz,1.5GHz,这几个频率分量的四分之一波长分别为3000mil,1000mil。而我们当前拓扑中两两之间1500mil,500mil的线长很容易就凑成了四分之一波长,谐振最严重的长度。   怎么办呢?我们将CPU到第一片颗粒之间的线长延长至2100mil,颗粒之间线长延长至700mil之后:     整体的裕量变大了,如果再稍微做一些容性负载补偿:   裕量进一步提升。实际操作时只需要在布局时稍微注意一下器件之间的距离,不需要增加成本,也不需要多余的绕线。   高速先生反射系列的文章到这里就结束了,最后总结一下:   •        反射的本质是波的反射,以及不同相位的波之间的叠加。   •        反射影响的严重程度主要是以下两点:   –        1.阻抗不匹配程度,影响谐振幅值。阻抗越不匹配,谐振幅度越大。   –        2.阻抗不匹配长度,影响谐振频率,不匹配长度越长,谐振频率越低。   •        需要根据实际情况分析反射的影响,对症下药。   希望这一系列文章对大家有帮助,欢迎大家提问讨论。  
  • 热度 21
    2015-2-5 17:07
    1457 次阅读|
    0 个评论
    作者:陈德恒  一博科技高速先生团队成员     在前文中有不少公式与计算,但其实个人觉得应用工程师要做的是知道趋势,知道影响范围,并不需要精确计算,那是软件干的事情。   最近听到一个理论,说大数据时代,人们只需要知其然,不需要知其所以然。想象一下,当我们要做一个项目时,我们可以轻而易举的知道一些其他类似项目哪些结构成功了哪些结构失败了,我们还需要理论分析干嘛呢?   这句话到底有没有道理大家仁者见仁智者见智,下面我们继续来解决我们的反射问题:Breakout区域有一次阻抗不连续,但走出该区域之后,走线从细变宽,会增加一次反射,那是不是全程按照breakout区域走线会比较好?   首先将问题进行简化,由于本身反射系数不大,第四次反射很小,假设传到RX的信号是最初的信号加上第二次反射的信号。   一段长为X的阻抗不连续,对哪个频率的影响最大呢?当相位差为(2n+1)π/2时,也就是相差二分之一波长的时候(反射一来一回,对应的X为四分之一波长)。   也就是说,当X为100mil时,第一次最大衰减的频点为15GHz,我们从S参数中可以很明显的看出:   当X为300mil时,第一次谐振频率为5GHz:   假设总线长为2000mil,而全部按照breakout区域走线的阻抗去走的话,第一次谐振频率则变成了750MHz,谐振周期为1.5GHz:     回头呼应反射系列文章的第一节,从那几张图中可以知道:   四分之一波长差的损耗为二分之一波长差损耗的30%,二分之一波长差时完全没有了,四分之一波长差时还有70%。   全反射(反射系数为1)时,在谐振频率损耗为100%,谐振频率的损耗跟反射强度有关。   看到这里估计各位看官也明白了,阻抗不连续越长,影响的频率越低。的的确确是因为阻抗不连续较短,反射淹没在上升沿当中了。   根据这套理论,我们很容易去判断设计中的一些细节对整个系统的影响到底有多大,举个例子:   信号速率越来越高是一种趋势,于是各种优化方案也被人们提了出来,这两个可能是近年来开始被大家熟悉的优化方案,加粗反焊盘上的走线或者填补走线附近的参考层,以防止反焊盘上扇出的走线阻抗偏高。可是这到底有多大的影响或者优化呢?   排除一些特殊情况(连接器,板厚较厚需要使用较大过孔等等),这一段在antipad上的走线长度大约为20mil(亲,不要把过孔pad算上哦)。   20mil的第一次谐振频率大约是多少呢?75GHz(四分之一波长)。如果我们按照二十分之一波长(影响不到1%)来算的话,对应的频率也是15GHz。您的信号需要做这样的优化吗?   看完这些之后,相信能帮助大家在工(he)程(ge)师(wan)精(sui)神和工(qiang)匠(po)精(zheng)神中间找到一个平衡点了。   这一节高速先生有给大家准备问题。问:减小反射影响的方法有哪些?  
相关资源