tag 标签: dcr

相关博文
  • 热度 3
    2020-7-23 08:36
    9039 次阅读|
    0 个评论
    摘要 DCR电流检测技术,因其具有无损耗之优点,是一个能获得正确电感电流讯息的好方法。然而,金属铜本身具有正温度系数,所以电感的 DCR 值会随温度变化而改变。而随温度变化的DCR 值,就会使控制器检测到不正确的电流信号。 常用的解决方式是在电流检测回路中加上 DCR 温度网络,以避免此温度效应。故此,本应用须知将介绍 DCR 温度补偿的基本概念和电路实现的方法。 1.为何需要DCR温度补偿网络 图一所示为一 DCR 电流检测网络。当时间常数相等,也就是 CxRx = L / DCR 时,如式(1)所示,VCX电压可用来取得电感电流信号。然而, DCR 值会以正比随温度增加,如式(2)所示,其中参数 TCDCR 是铜的温度系数,且是一正数。当电路在重载条件下工作时,电感的温度也会随之增加。这使得稳压器会因随温度改变的 DCR 值,检测到错误的负载电流值,进而回报不正确的电流讯息。此外,也会使得输出电压无法达到其该有的值,也因此就无法满足在 VCORE 应用中所需要的适应性电压定位 (AVP) 下垂的负载线规格。所以,在此探讨的温度补偿网络就是为了解决这个问题。 图一、DCR电流检测网络 2. DCR 温度补偿之架构 DCR温度补偿网络的目的就是使 DCR 值不随温度改变,因此使得 VCX 电压只和电感电流有关。因为 DCR 是一具有正温度系数的电阻,所以就必须在电流检测回路中插入一个有负温度系数的电阻性网络,以补偿 DCR 随温度的变化。当有 Y个温度点需要进行补偿,补偿网络就需要 Y 个电阻和一个负温度系数(NTC)的热敏电阻,如此才能在这 Y 个温度点时,DCR 值的温度变化均可被抵消。然而,不同的电流检测架构,DCR温度补偿网络的设计方式也不同。图二和图三分别显示了总和电流检测架构 (sum current sensing topology) 和差分电流检测架构 (differential current sensing topology) 的温度补偿网络,及其电路示意图。总和电流检测架构示范的是有三个温度点作补偿的补偿网络,而差分电流检测架构则示范的是有两个温度点作补偿的补偿网络。式(3)和式(4)可分别作为这两个电流检测架构的设计原则。 图二、总和电流检测架构之DCR温度补偿网络 图三、差分电流检测架构之DCR温度补偿网络 3. DCR 温度补偿网络之公式推导 在本节中,将以总和电流检测架构为例,说明如何推导出温度补偿网络。如式(3),藉由 Vsum 电压及一个适当的比例,即可得到正确负载电流的讯息;此比例为Rsum 和(Rx+Rs)之比,如式 (5)所示。以 RT8893 例,此值必须设为4,才能有正常的操作。 而为了消除温度对 DCR 的影响,必须在 Rsum 网络中插入一个 NTC 热敏电阻,使得 Vsum 电压不会随温度改变。 NTC热敏电阻和温度之间的关系如式(6),其中 β 是 NTC 的温度系数;不同的 NTC 热敏电阻,β 值也会不同。 如果是有三个温度点(TL、TR和TH)需要进行补偿,则在此三个温度点,Vsum 电压必须相同;也就是如式(7)之右侧所示之结果,与温度无关。Rsum(T) 为内含 NTC 热敏电阻的热补偿网络之等效电阻,其表示式为式(8)。 因此,由以上公式,Rsum 网络之各参数可分别由公式(9),(10),和(11)得出。详细之推导,可参阅附录 I。 在经过温度补偿电路之后,VSUM 在这三个温度点的误差(例如:20°C, 60°C, 和 100°C)应当为零,如图四所示。 图四、DCR温度补偿后之VSUM误差 4. DCR 温度补偿网络的设计范例 以下设计方法所选用的是总和电流检测架构,并以 RT8893 作为设计范例;所订的规格是根据英特尔VR12.5的设计需求。 VCORE 规格 输入电压 10.8V to 13.2V 相位数 3 Vboot 1.7V VDAC(MAX) 1.8V ICCMAX 90A ICC-DY 60A ICC-TDC 55A 负载线 1.5mΩ 快速电压回转率 12.5mV/µs 最大开关频率 300kHz 在 Shark Bay VRTB 桌上型平台指南中,输出滤波器的设计需求如下所示: 输出电感:360nH/0.72mΩ 输出大型电容:560µF/2.5V/5mΩ(max) 4 至 5 个 输出陶瓷电容:22µF / 0805 (在上层最多可放 18 个) 步骤1:决定电感的参数 决定电感值。 输出电感:360nH/0.72mΩ 决定DCR温度系数,TCDCR。 TCDCR = 3930ppm 因此,受温度影响的电感 DCR值,可由式(2)算出。下面的计算范例是 60°C 的 DCR 值。 步骤2:决定热补偿的NTC参数 选用型号 NCP15WL104J03RC 的 NTC热敏电阻;该电阻值为100kΩ,且 β 值是 4485。利用式(6),可以计算在不同温度下的 NTC 电阻值;NTC热敏电阻操作于 60°C 时,其电阻值可计算如下: 步骤3:设计 DCR 电流检测网络及 Rx、Rs 和 Rsum 之值 如何决定 DCR 电流检测网络中之电容 Cx 及电阻 Rx 和 Rs ,可参阅应用须知AN033 「不同DCR电流检测架构之比较」。 Cx = 1µF, Rs = 3.41kΩ, and Rx = 590Ω 在RT8893,Rsum 和 (Rx+Rs) 之比值必须设为4,才能有正常的操作。 Rsum = 4•(Rx+Rs) = 16kΩ 步骤4:设计Rsum 之电阻网络 选定三个作温度补偿之温度点。 选择(TH,TR,TL)=(100,60,20) 例如,Rsum 在 60°C 下的值可由式(7)获得: 因此,参数α1,α2,及ΚR可以计算如下: 再藉由公式(9),(10),和(11),可因此而算出Rsump,Rsums2和Rsums1。 5. 实验结果 图五显示了有 DCR 温度补偿之 DCLL 和 DIMON 回报结果。从实验结果来看,DCLL和DIMON回报结果都在容忍范围内。然而,若无 DCR 温度补偿,则在重载条件下,DIMON 回报结果会是高估的,因而造成 DCLL 会无法满足负载线规格,见图六。 (a) DCLL (b)DIMON 回报 图五、有 DCR 温度补偿之 DCLL 和 DIMON 回报结果 (a) DCLL (b)DIMON 回报 图六、无DCR温度补偿之 DCLL 和 DIMON 报告结果 6. 结论 本应用须知提供了DCR温度补偿电路的设计方法及实用的设计公式;经由适当的设计,它可以有效地减少因温度变化而对 DCR 值产生的影响,因此能在 DCR 电流检测应用中,提供正确的电流讯息。 7. 参考数据 立锜科技 RT8884B 规格书。 立锜科技 RT8893 规格书。 Intel, VR12.5 Pulse Width Modulation (PWM) 规格 立锜科技之应用须知AN033 「不同DCR电流检测架构之比较」。 附录I. DCR温度补偿网络之公式推导 将三个温度点(TL,TR,TH)都代入式(8),即可得式(12)至式(14)。而式(15)和式(16)可分别由式(12)- 式(13)和式(13)- 式(14)得出。 定义 kR=Rsump+Rsums2,则可进一步将式(15)和式(16)表示为式(17)和式(18)。 式(19)可由式(18)/ 式(17)导出。 从式(18),可得Rsump,如式(20)。 然后,可得 Rsums2,如式(21)。 Rsums1可因此推导而得,如式(22)。 来源:立锜科技电子报
  • 热度 20
    2015-5-15 13:52
    1520 次阅读|
    3 个评论
    向杰出的Fred A. Engleberry博士致敬  希望您一切都好。我的电力电子专业知识乏善可陈,为此我感到很羞愧。我诚恳地希望您提供善意的帮助。 我目前正在研究一个号称“无损耗的”电流检测设计(参见下面的电路图片段)。 有电阻存在它是如何实现无损耗的呢? 另外,电容器的作用是什么? 它看起来像个滤波器,但又似乎不对,有许多需要滤波的噪音吗? 这个电路有效吗? 我是一个有着丰富阅历的人,因此我知道凡人是无法达到完美境界的。 该电路有哪些危险性和局限性? —Vijay in Vallejo   您好,Vijay。确实,我一切都好,事实上是更好。我刚完成了一个跨州的头等舱(只会是头等舱)长线飞机旅行,在林肯中心欣赏了大都市歌剧院演出的雅克·奥芬巴赫未完成的杰作《霍夫曼的故事》。然而,您写信给我的目的不是讨论法国歌剧,但我希望您可以纵容我一下,我在工作时就想象成我正在挥舞着手臂,附和着男中音歌手重演。 与电感器串联的电阻表示电感器的串联电阻。该绕线电阻始终存在。我们可以最小化该电阻,但却不能消除它。 之所以说 ESR 检测电路没有损耗,是因为我们没有添加任何额外的电流检测电阻,我们只是使用不可避免的电阻。 正如你所猜测的, 电容器不是滤波器 ,但可以视为一个重建器件,其电容电压是电感电流的模拟。 我会扩展您的电路并包括更多典型元件。在图 1 中,注意添加的典型同步降压开关节点波形以及产生的电感电流。说明: 节点数量与 PSPICE 文件匹配。   图1 如何选择 R2 和 C1? 很简单,设置 L/R = RC,因而 RL 网络的阻抗与 RC 网络的阻抗匹配;由于网络匹配,电容器两端的电压模拟电感器电流。说明: 若 VC 过度驱动电流检测放大器,R3 就可用来缩放VC。说明: 若使用 R3,则阻抗匹配计算中所用的 R 应该是 R2 和 R3 并联等效值。为了利用一定的滤波,我们通常希望 C1 至少为 0.1μF。 我们可以看到 VC模拟 IL(如图2模拟所示),其中绿色曲线是电感器电流,而红色曲线是电容器电压。可以看到波形匹配得很好。   图2 图3波形是通过简单的 PSPICE 仿真绘制的。说明: 曲线自 950 uSec 开始,允许谐振 LC(其中 C 是指大容量输出电容)网络达到接近稳态。还请注意用于覆盖波形的 Y 轴比例。   图3 图3 这个电路有效吗? 当然有效,这个电路在业界很常见,用于很多地方。 您最后那个关于危险性和局限性的问题很富有洞察力。 该电路有哪些问题呢? 首先,为了处理更高的电流,我们使用较大的铜导线,电感器的 ESR 就会降低。这意味着 VC波形的幅度会变小而对应的信噪比会变差。在我们的例子中,注意对于 36.5 A 的电流,我们得到 8.92 mV 的 VC信号。在嘈杂的电源环境中,很难测量没有显著噪声耦合的毫伏信号,我们总是推荐使用差分跟踪路由、隔离和屏蔽,尤其是对于开关节点的振铃。当然,更低电流的信噪比更差,其中,VC接近微伏,这样低电流测量就更加不准确。 测得电流的容差堆积存在更大的问题。电感器 ESR 可能有一个初始±7%的容差。铜的正温度系数每度大概增加 0.4%。对于 75 度的温升,这意味着 290 uOhm 铜电阻大概增加 87 微欧 (+30%)。实际上,很难使得整体 ESR 电流检测精度高于 ±15%,尽管可以通过温度补偿电路实现一定程度的改善。 为了方便讨论,我们可以假设您正在设计一个提供 35 A 稳态电流的电路。为了避免错误触发瞬态负载,可以将 OCP(过流保护)触发电流设置为 50 A。假设整体误差为 15%。这就说,当您认为输出电流是 50 A 时,它实际上要高出 15% (57.5A)。那么,现在您设计的电路必须能够以无损方式以 57.5 A 的恒流运行,尽管您通常只使用 35 A。这就是大量过度开销,而过度设计耗费的是真实的金钱。有一个选择是使用一个精密电流检测电阻与电感器串联。这会提高精度,但会花费金钱并浪费功率——这样的事情会使设计管理团队血压升高。 正是由于这些顾虑,如今对电流检测的关注度才这么高,并且为提高电流检测电路的精度度作出了很大的努力。 现在,在进行了这么多的武断讨论后,抱歉,我可以用含铅水晶玻璃杯小酌一杯令人神清气爽的单麦芽威士忌了。不掺水的。  
  • 热度 28
    2013-2-5 13:10
    3578 次阅读|
    2 个评论
    假如磁珠用于信号线,那应该如何选择磁珠的种类呢? 首先,我们应该知道磁珠要用于何种信号线,比如是音频,视频还是其他。这也就是说应该知道信号的工作频率。原则上,磁珠的阻抗峰值频率应至少高于信号的有效带宽,否则会影响影响信号完整性,从而影响系统的正常工作。即使对于像音频之类的低频信号,因为音频信号通常是由音频解码器解码而来,其EMI噪声通常是音频解码器的几十MHz的时钟频率谐波。因此,即使是低频的音频信号,其EMI噪声通常也会是高达几十甚至几百MHz的高频噪声。 其次,要知道信号电流。对于大多数信号而言,像视频,RS232等,仅仅是信号而已,并没有太大的电流输出,因此通常不需要考虑磁珠的额定电流。但对于音频信号,通常是有功率输出的,此时磁珠的选择就要考虑输出电流。此时要将音频信号折算成有效值来选取适当额定电流的磁珠。 峰值阻抗应选择在可能出现EMI问题的频率点附近。 用于高速信号的磁珠要注意阻抗匹配,比如用于视频信号线的磁珠阻抗在100MHz左右要在50欧姆左右。 用于信号线的磁珠,通常不需要考虑磁珠DCR,磁珠的尺寸要越小越好。 最后就是磁珠的阻抗曲线要尽量陡峭,以免影响信号完整性。 小磁珠,大学问! 但愿这几篇拙文能够给广大读者有些帮助。 后面会接着聊其他EMC话题,敬请关注! 如需转载,请注明出处,多谢!  
  • 热度 21
    2013-2-5 13:09
    2356 次阅读|
    0 个评论
    EMC磁珠应用于电子线路中抑制EMI,主要有两种应用: 1.最常见用于电源线。2.用于信号线像音频,视频线等。那应该如何根据实际应用从千万种不同特性的EMC磁珠中选择合适的磁珠用于自己的系统设计呢? 向前面所述,如果要选用磁珠用于电源线,应该做如何选择呢? 首先,要知道开关电源的工作频率。通常大多数开关电源工作于几百KHz,少数的可以工作到几MHz. 这个频率基本上是在传导辐射的频率范围。对于起始于30MHz辐射频率来讲,属于低频的范围。一般来讲,电源产生的辐射EMI噪声,通常在小于100MHz-300MHz范围. 因此,选择磁珠用选用峰值频率小于300MHz低频型的磁珠。 其次,就是要知道电源的工作电流。对于哪些放置于开关或非直流信号的磁珠,通常要讲交流信号转换有效值,以此来选择磁珠的额定电流。 对于用于电源线磁珠尺寸,像我们前面讲到的,在满足排版空间设计要求情况下,要尽量选用大尺寸的磁珠。 用于电源线的磁珠,DCR是十分关键的参数,特别是对于电池供电的便携式设备,像手机,平板电脑等。应尽量选用DCR小的磁珠用于电源线,以提高电源效率。 当然,从抑制EMI的角度来讲,磁珠的峰值阻抗越高越好。但通常,磁珠的阻抗与DCR成反比关系。需哟根据实际的应用情况,在DCR和阻抗间做一折中选择。 最后,就像前面所讲的,磁珠的阻抗曲线要尽量平坦,以最大限度的滤除电源的高次谐波噪声。 如需转载,请注明出处,多谢!  
相关资源