tag 标签: 工作原理

相关帖子
相关博文
  • 热度 6
    2024-11-12 10:54
    249 次阅读|
    0 个评论
    温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是最早开发,应用zui广的一类传感器。温度传感器的shi场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。 两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称之为热电偶。不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在5~40微伏/℃之间。 热电偶传感器 有自己的优点和缺陷,它灵敏度比较低,容易受到环境干扰信号的影响,也容易受到前置放大器温度漂移的影响,因此不适合测量微小的温度变化。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有ji高的响应速度,可以测量快速变化的过程。 温度传感器是五花八门的各种传感器中最为常用的一种,现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。 温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。 接触式温度传感器 的检测部分与被测对象有良好的接触,又称温度计。 温度计通过传导或对流达到热平衡,从而使温度计的示值能直接表示被测对象的温度。一般测量精度较高。在一定的测温范围内,温度计也可测量物体内部的温度分布。但对于运动体、小目标或热容量很小的对象则会产生较大的测量误差,常用的温度计有双金属温度计、玻璃液体温度计、压力式温度计、电阻温度计、热敏电阻和温差电偶等。它们广泛应用于工业、农业、商业等部门。在日常生活中人们也常常使用这些温度计。随着低温技术在guo防工程、空间技术、冶金、电子、食品、医药和石油化工等部门的广泛应用和超导技术的研究,测量120K以下温度的低温温度计得到了发展,如低温气体温度计、蒸汽压温度计、声学温度计、顺磁盐温度计、量子温度计、低温热电阻和低温温差电偶等。低温温度计要求感温元件体积小、准确度高、复现性和稳定性好。利用多孔高硅氧玻璃渗碳烧结而成的渗碳玻璃热电阻就是低温温度计的一种感温元件,可用于测量1.6~300K范围内的温度。 非接触式温度传感器 的敏感元件与被测对象互不接触,又称非接触式测温仪表。这种仪表可用来测量运动物体、小目标和热容量小或温度变化迅速(瞬变)对象的表面温度,也可用于测量温度场的温度分布。 光纤温度传感器的基本工作原理是将来自光源的光经过光纤送入调制器,待测参数温度与进入调制区的光相互作用后,导致光的光学性质(如光的强度、波长、频率、相位等)发生变化,称为被调制的信号光。再经过光纤送入光探测器,经解调后,获得被测参数。 光纤温度传感器 种类很多,但概括起来按其工作原理可分为功能型和传输型两种。功能型光纤温度传感器是利用光纤的各种特性(相位、偏振、强度等)随温度变换的特点,进行温度测定。这类传感器尽管具有传、感合一的特点,但也增加了增敏和去敏的困难。传输型光纤温度传感器的光纤只是起到光信号传输的作用,以避开测温区域复杂的环境。对待测对象的调制功能是靠其他物理性质的敏感元件来实现的。这类传感器由于存在光纤与传感头的光耦合问题,增加了系统的复杂性,且对机械振动之类的干扰比较敏感。
  • 热度 2
    2023-12-1 14:50
    1065 次阅读|
    0 个评论
    高低温探针台的工作原理
    高低温探针台是一种用于材料科学、物理、化学等领域的实验设备,主要用于在高温和低温环境下对材料进行各种实验和研究。下面是高低温探针台的工作原理。 工作原理是将样品放置在加热和冷却组件上,然后使用各种测量仪器对其进行实验和测量。具体来说,其工作流程如下: 将样品放置在加热和冷却组件上; 启动加热系统,将样品加热到所需的温度; 启动制冷系统,将冷却组件降温到所需的温度; 通过各种测量仪器对样品进行实验和测量; 记录实验数据并进行分析和处理; 结束实验后,关闭加热和制冷系统,并解除真空状态,取出样品。 总之,高低温探针台是一种非常先进的实验设备,可以在不同的温度条件下对材料进行各种实验和研究,广泛应用于材料科学、物理、化学等领域。 ​
  • 热度 8
    2023-9-27 15:09
    814 次阅读|
    0 个评论
    简述双极性电源数字源表工作原理
    数字源表工作原理 SMU可以单独作为恒定电压源或者恒电流源来使用,也可以单独作为电压表或电流表来使用。然而,它们的强大之处在于同时将提供信号源的功能与测量的功能紧密融合为一体,向待测器件(负载)提供驱动电压同时测量其中流过的电流,或是向负载提供驱动电流同时测量其两端的电压。 四象限工作,可以作为源或负载 电源象限是指以电源输出电压为X轴、输出电流为Y轴形成的象限图。第一、三象限即电压电流同向,源表对其它设备供电,称为源模式;第二、四象限即电压电流反向,其它设备对源表放电,源表被动吸收流入的电流,且可为电流提供返回路径,称为阱模式。 与传统矩阵电源不同,S系列源表在同等功率下,客户可根据实际需求,选择大电压小电流或小电压大电流输出。选择的量程不同,S系列源表的源/阱极限也有区别。 源限度-电压源: 士10V(≤3A量程),土30V (≤1A量程),士300V (≤100mA量程) 源限度-电流源: 土3.15A(≤10V量程),土1.05A(≤30V量程),士105mA (≤300V量程) 提供的应用程序 - 序列扫描 - 自定义序列 - 数据记录仪:持续输出恒压源测试模式;持续输出恒流源测试模式 - APD管 - 晶体管:MOSFET管测试;三极管测试 - LIV:PIN管扫描测试 - Gummer:双台源表使用同样参数进行扫描 数字源表基本功能 集多种功能为一体的精密测量仪器,主要是测量电气性能 SMU源表可以当电源,万用表或电源/测量组合. 当电源时: 可编程电压源 可编程电流源 当万用表时: 数字电压表(电流源,输出电流为0,测电压) 数字电流表(电压源,输出电压为0,测电流) 数字欧姆表(电流源,输出电流为一定值,测电压) 当电子负载时: 可编程恒压负载 可编程恒流负载 当电源/测量表组合(SMU): 电压源与电流测量
  • 热度 6
    2023-9-22 11:20
    782 次阅读|
    0 个评论
    当有两种不同的导体或半导体 A 和 B 组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为 T ,称为工作端或热端,另一端温度为 T0 ,称为自由端(也称参考端)或冷端,回路中将产生一个电动势,该电动势的方向和大小与导体的材料及两接点的温度有关。这种现象称为 “ 热电效应 ” ,两种导体组成的回路称为 “ 热电偶 ” ,这两种导体称为 “ 热电极 ” ,产生的电动势则称为 “ 热电动势 ” 。 热电动势由两部分电动势组成,一部分是两种导体的接触电动势,另一部分是单一导体的温差电动势。 热电偶回路中热电动势的大小,只与组成热电偶的导体材料和两接点的温度有关,而与热电偶的形状尺寸无关。当热电偶两电极材料固定后,热电动势便是两接点温度 t 和 t0 。的函数差。即 这一关系式在实际测温中得到了广泛应用。因为冷端 t0 恒定,热电偶产生的热电动势只随热端 ( 测量端 ) 温度的变化而变化,即一定的热电动势对应着一定的温度。我们只要用测量热电动势的方法就可达到测温的目的。 热 电偶 测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势 —— 热电动势,这就是所谓的 塞贝克效应 (Seebeck effect )。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表; 分度表 是自由端温度在 0℃ 时的条件下得到的,不同的热电偶具有不同的分度表。 在热电偶回路中接入第三种金属材料时,只要该材料两个接点的温度相同,热电偶所产生的热 电势 将保持不变,即不受第三种金属接入回路中的影响。因此,在热电偶测温时,可接入 测量仪表 ,测得热电动势后,即可知道被测介质的温度。热电偶测量温度时要求其冷端(测量端为热端,通过引线与 测量电路 连接的端称为冷端)的温度保持不变,其热电势大小才与测量温度呈一定的比例关系。若测量时,冷端的(环境)温度变化,将严重影响测量的准确性。在冷端采取一定措施补偿由于冷端温度变化造成的影响称为热电偶的冷端补偿正常。与 测量仪表 连接用专用补偿导线。 热电偶冷端补偿计算方法: 从毫伏到温度:测量冷端温度,换算为对应毫伏值,与热电偶的毫伏值相加,换算出温度; 从温度到毫伏:测量出实际温度与冷端温度,分别换算为毫伏值,相减後得出毫伏值,即得温度。
  • 热度 8
    2023-9-19 15:12
    935 次阅读|
    0 个评论
    温度传感器工作原理
    温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是 极其 早开发,应用 极其 广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。从 17 世纪初人们开始利用温度进行测量。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、 PN 结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。 两种不同材质的导体,如在某点互相连接在一起,对这个连接点加热,在它们不加热的部位就会出现电位差。这个电位差的数值与不加热部位测量点的温度有关,和这两种导体的材质有关。这种现象可以在很宽的温度范围内出现,如果 准确 测量这个电位差,再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称之为热电偶。不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化 1℃ 时,输出电位差的变化量。对于大多数金属材料支撑的热电偶而言,这个数值大约在 5 ~ 40 微伏 /℃ 之间。
相关资源