tag 标签: multisim

相关帖子
相关博文
  • 热度 23
    2015-3-14 20:13
    1858 次阅读|
    0 个评论
       0. 前言   EDA技术发展迅猛,已在科研、产品设计与制造及教学等各方面都发挥着巨火的作用。EDA代表了当今电子产品设计的最新发展方向,利用EDA工具,电子工程师不仅可以在计算机上设计电子产品,还可以将电子产品从电路设计、模拟实验、性能分忻、到设计出PCB印制板的整个过程在计算机上处理完成。在教学方面,几乎所有理工科的高校都开设了EDA课程,学生通过EDA的学习演练,掌握用EDA技术进行电子电路的设计、《电子技术基础》课程的模拟仿真实验,从而为今后从事电子技术设计工作打下基础。   Multisim2001是电子电路设计与仿真方面的EDA软件。由于Multisim2001的最强大功能是用于电路的设计与仿真,因此称这种软件叫做虚拟电子实验室或电子工作平台。在任一台计算机上,利用Multisim2001均可以创建《电子技术基础》虚拟实验室,从而改变传统的教学模式,学生可把学到的《电子技术基础》知识,应用Multisim2001电路仿真软件进行验证。例如串联型直流稳压电源的设计,该系统是由整流、滤波和稳压三部分组成,桥式整流电路加上电容滤波后,使输出的波形更平滑,稳压部分,一般有 四个环节:调整环节、基准电压、比较放大器和取样电路。当电网电压或负载变动引起输出电压Uo变化时,取样电路将输出电压Uo的一部分馈送给比较放大器与基准电压进行比较,产生的误差电压经放大后去控制调整管的基极电流,自动地改变调整管的集一射极间电压,补偿Uo的变化,从而维持输出电压慕本不变。    1. 直流稳压电源设计   设计并制作串联型直流稳压电源,其输出电压UO=10V,输出调整范围为8~12V,额定输出电流IL=100 mA,电网电源波动±10%,稳压系数Sr0.05,输出电阻RO=0.05。工作温度为25~40℃。    1.1 初选电路   根据设计题目要求,输出电流为100mA较大,所以选用由两个三极管组成的复合管,从稳压调节范围考虑,选择带有可变电阻器的取样电路,由此初选一个电路原理图如图1,通过参数计算和仿真测试,再重新考虑所选电路,使之满足要求。最后在调试过程中进一步确定电路及元件参数。    1.2 元件参数选择    1.2.1 整流滤波电路   采用桥式整流,电容滤波电路。为了保证调整管始终工作在放大区,需要有一定的管压降,根据计算得出U1=15V。考虑到IL=100mA,加上通过R6、稳压管VZ的电流(取10mA),取样电路的电流(取20mA)。经过整流二极管的电流ID=130mA。在实际电路中根据计算出的U1和ID来选取整流二极管,本例中选取3N259,滤波电容选取470μF/30V。    1.2.2 调整部分   调整管V1的选取原则是工作可靠。根据BUCEO≥UOMAX,ICM≥1.5IOM,选取V1为2N6703。    1.2.3 基准电压   选择原则是使取样电压尽可能高一些,以更好地反映Uo的变化,一般取分压比为(0.5~0.8),稳压值在6V左右较好。所以选取稳压值为6.2V,型号为IN4735A的稳压管。    1.2.4 放大电路和取样电路   选择放大电路参数的原则是保证在电网电压或负载电流变化时放大电路都应工作在放大区并且尽量提高放大倍数,以满足稳压精度的要求。这里选取2N2222。   取样电路,为了提高稳定性,要使通过取样电阻R7、RP、R8的电流比V4基极电流大得多,这样才能保证分压比的要求。但是电流太大时,取样电阻上的损耗也大,这里取电流为20mA。根据计算选取R7=100Ω,R8=200Ω,RP=220Ω。    2. 编辑电路原理图    2.1 放置元器件   在Windows桌面上,双击Multisim2001图标进入程序主窗口,主窗口中最大的区域是电路工作区,在此可对电路原理图进行编辑和测试。首先,将初选电路原理图中的所有元器件,分类从元器件库中调出来。方法是在元器件库工具栏中,单击包含该元器件的图标,打开该元器件库,从元器件库中将该元器件拖拽至电路工作区。例如:放置V1,单击三极管元器件库图标,打开Transistors三极管元器件库,三极管图标下的底纹有灰色和绿色,灰色是表示现实中存在的元器件,绿色表示在现实中不存在,是虚拟元器件。单击灰色底纹的NPN型三极管,打开ComponentBrowser对话框,选择2N6703,单击OK,移动鼠标到合适位置,单击鼠标放下三极管。元器件方向不合适,在其上右键单击,出现快捷菜单,在菜单上根据需要选择镜像、旋转……。元器件V1需要执行90CounterCW命令,逆时针旋转90°。到此为止,元器件V1放置完毕。利用此方法依次放置所有元器件。元器件放置完后,要精心布局元器件的放置位置,以确保元器件分布合理、美观。        2.2 导线的连接   元器件放置完毕后,进行连线,按照原理图,将鼠标指向元器件的管脚使其出现实心小十字,按下鼠标左键,拖拽出一根导线并连接至相关元器件的管脚,同样方法,正确完成所有导线的连接。至此原理图编辑完成,如图1所示。            2.3 仪器的调入   选用仪器可从仪器库中将相应的仪器图标拖拽至电路工作区,仪器图标上有连接端,用于将仪器连入电路,如图2所示。本例中使用了万用表、示波器。万用表有两个输入端,示波器共有4个接线端(A通道端、B通道端、T触发端、G接地端)。需要观察测试波形时,可以双击仪器图标打开仪器面板,如图2(a),示波器显示的是桥式整流后没有滤波的波形,图2(b)万用表显示的是输出UO的数值。仪器的使用方法和实际仪器基本相同,万用表的使用方法,首先要根据被测两点的实际情况,用鼠标选择测量直流-还是交流~,然屙选抒测量电压V、电流I或电阻R。示波器的使用方法,首先选择工作模式Y/T,然后选择A、B通道的输入耦合开关,是直流DC、交流AC还是接地零。           3. 电路的仿真分析    3.1 仿真步骤   仿真分析开始前可双击仪器图标打开仪器面板。准备观察被测试波形。按下程序窗口右上角的启动/停止开关状态为1,仿真分析开始。若再次按下,启动/停止升关状态为0,仿真分析停止。电路启动后,需要调整示波器的时基和通道控制,使波形显示正常。仿真后的的仪器工作状态如图3所示。           3.2 仿真输出结果    3.2.1 整流滤波   在输入端加人幅度U1=15V,频率为50Hz的交流电压,RL=100Ω,可用Multisim2001电子工作台上提供的万用表、示波器观察滤波电路输出结果。这时调节RP,使输出UO在10V左右,从图3中可以看到用万用表测量出关键点的电压U1=14.998V,UI=18.381V,UO=10.156V,用示波器A通道和B通道分别显示整流滤波后电压UI的波形和稳压输出电压Uo的波形,从示波器显示窗口可以看山:上面一条锯齿波曲线为UI波形,下面一条线为Uo波形。    3.2.2 稳压电路   模拟交流电网波动±10%分别为13.5V和16.5V,频率为50Hz交流电压时的情况。首先改变输入电压信号,模拟电网波动,用Multi-sim2001工作平台操作比较简单,只需用鼠标对准电压源双击,根据屏幕显示将其由15 V,分别改变为13.5V、16.5V,这时测量的对应的UI分别为16.280V和20.406V,输出电压UO为10.133V和10.181V。    3.2.3 过流保护电路   当U1=15V,频率为50Hz,分别改变RL。   当RL=∞,Uo=10.160V;   当RL=100Ω,IL=101.816mA,Uo=10.156V;   当RL=10Ω,IL=160.075mA,Uo=1.601V;   当RL=5.1Ω,IL=158.433mA,Uo=808.005mV,   当当负载短路时,IL=156.741mA,Uo=156.74lpV。   从测量的数据看,本电路是一个限流型保护电路。    4. 与设计指标比较校核    4.1 输出电压   理论计算Uo=(R7′+R8′)(Vz+Ube4)/R8=10.196V。式中R7′=R7+RP′=265Ω,R8′=R8+RP″=255Ω,VZ=4.3V,Ube4=0.7V。式中RP′是RP的上半部分阻值,RP″是RP的下半部分阻值。用Multisim2001模拟仿真。使用万用表实测输出电压为Uo=10.160V,测量稳压电源输出电压Uo调节范围当U1=15V,频率为50Hz,调节RP,即当键盘字母为小写状态,连续按下A键,电位器滑动头向下移动,直至最下端,这时测量Uo=13.29V:反之,当键盘字母为大写状态,连续按下A键,电位器滑动头向上移动,直至最上端,这时测量Uo=6.064V。    4.2 稳压系数Sr理论值的计算                                          式中β4取值30, 取值1K, 为取样电路的分压比。用Multisim2001模拟仿真电子线路,根据屏幕显示将其由15 V,改变为13.5 V,这时测量的对应UI分别为18.381V和16.280V,输出电压UO为10.156V和10.133V。   由此得出:                           4.3 输出电阻   用Multisim2001模拟仿真测量的数据:当RL=∞, UO="10".160V; 当 RL="100"Ω,IL=101.816mA,Uo=10.156V;计算得出:                          通过以上分析,串联型直流稳压电源的测量值和理论计算相符。实际线路满足设计指标要求。如果以上设计的电路通过模拟仿真分析,不符合设计要求,可通过逐渐改变元器件参数,或更改元器件型号,使设计符合要求,最终确定出元器件参数。并可对更改的电路立即进行仿真分析,观察虚拟结果是否满足设计要求,这在实际的电路板中是难以做到的。    5. 结束语   从上述例子可见,Multisim2001是一个开放的虚拟电子实验平台。既有它的优越性,又有它的局限件。设计人员可以做各种类型的电子线路实验和实际电子产品设计,但不能完全取代最终电路和实物测试,因为实际电子线路,干扰现象是一个不好解决的难题,特别是高频电路。之所以用Multi-sim2001模拟仿真,就是在制成实际电路之前能够保证电路有大致正确的参数属性,从而减少设计中不必要的弯路。在《电子技术基础》教学中,运用Multisim2001电路仿真软件进行教学,一方面可以验证理论知识,另一方面还可以设置一些故障,例如串联型直流稳压电源中,调整管V1的c-e极断路。先提问学生从理论上分析会出现什么问题,然后让学生应用仿真软件进行仿真,来验证结果,从而拓展学生思维,进一步促进《电子技术基础》的教学。因而我们可以看到,对于工程技术人员,合理运用Multisim2001电路仿真软件,可以节省大量人力、物力,缩短设计周期;对于教师教学,能够理论联系实际,强化学生实践能力,培养出实用型人才。
  • 热度 30
    2015-3-14 20:11
    2267 次阅读|
    0 个评论
      差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难点。Muhisim作为著名的电路设计与仿真软件,它不需要真实电路环境的介入,具有仿真速度快、精度高、准确、形象等优点。因此,Multisim被许多高校引入到电子电路实验的辅助教学中,形成虚拟实验和虚拟实验室。通过对实际电子电路的仿真分析,对于缩短设计周期、节省设计费用、提高设计质量具有重要意义。    1 Multisim8软件的特点   Muhisim是加拿大IIT(Interactive Image Tech—nologies) 公司在EWB(Electronics Workbench)基础 上推出的电子电路仿真设计软件,Muhisim现有版本为Muhisim2001,Muhisim7和较新版本Muhisim8。它具有这样一些特点: (1)系统高度集成,界面直观,操作方便。将电路原理图的创建、电路的仿真分析和分析结果的输出都集成在一起。采用直观的图形界面创建电路:在计算机屏幕上模仿真实验室的工作台,绘制电路图需要的元器件、电路仿真需要的测试仪器均可直接从屏幕上选取。操作方法简单易学。   (2)支持模拟电路、数字电路以及模拟/数字混合电路的设计仿真。既可以分别对模拟电子系统和数字电子系统进行仿真,也可以对数字电路和模拟电路混合在一起的电子系统进行仿真分析。   (3)电路分析手段完备,除了可以用多种常用测试仪表(如示波器、数字万用表、波特图仪等)对电路进行测试以外,还提供多种电路分析方法,包括静态工作点分析、瞬态分析、傅里叶分析等。   (4)提供多种输入/输出接口,可以输入由PSpice 等其他电路仿真软件所创建的Spice网表文件,并自动形成相应的电路原理图,也可以把Muhisim环境下创建的电路原理图文件输出给Protel等常见的印刷电路软件PCB进行印刷电路设计。    2  差分放大电路仿真分析   运行Muhisim 8,在绘图编辑器中选择信号源、直流电源、三极管、电阻,创建双端输入双端输出差分放大电路(双入双出差分放大电路)如图1所示,标出电路中的结点编号。   该次仿真中,采用虚拟直流电压源和虚拟晶体管,差分输入信号采用一对峰值为5 mV、频率为1 kHz的 虚拟正弦波信号源。设置虚拟晶体管的模型参数BF= 150,RR=300Ω。    2.1 差模放大性能仿真分析   2.1.1 直流分析   直流分析实际上就是确定静态工作点。选择Sim-ulate菜单中的Analysis命令,然后选择Dc OperatingPoint子命令,分析结果如图2所示。   用静态工作点分析方法得VBEQ1=UBEQ2=O.69 V,UCEQ1=UCEQ2=V3一V2Δ8.94 V,与题中理论计算结果完全相同。    2.1.2 差模放大倍数分析   加差模信号 ui1,ui2,分别接入电路的左右输入端,电阻R1作为输出负载,则电路的接法属于双入双出。将四通道示波器XSC1的3个通道分别接在信号源ui1和负载R1两端,如图1所示。运行并双击示波器图标XSC1,调整各通道显示比例,得差分放大电路的输入/输出波形如图3所示。   用示波器观察和测量输入电压和输出电压值,差模信号单边电压V1△一3.597 mV(5 mV/Div),单边输出交流幅值约为170.124 mV(500 mV/Div),所以双入双出差分放大电路的差模放大倍数AuΔ一170.124/3.597=一47,与单管共射的放大倍数相同,即差分放大电路对差模信号具有很强的放大能力。仿真结果与题中理论计算结果相同。    2.2 共模抑制特性仿真分析   2.2.1 共模放大倍数分析   在图1中,将信号源ui2的方向反过来,即加上共模信号,运行并双击示波器图标XSC1,调整A,B通道显示比例,可得如图4所示波形。   由图4波形可知,在峰一峰14 mV(有效值为5 mV)的共模信号作用下,输出的峰值极小,峰一峰值为13 mV,因此单边共模放大倍数小于1。且uc1和uc2大小相等,极性相同。所以,在参数对称且双端输出时,共模放大倍数等于0,说明差分放大电路对共模信号具有很强的抑制能力。显然,仿真结果与理论分析结果一致。    2.2.2 共模抑制比分析   选择Simulate菜单中的Analysis命令,然后选择Transient Analysis子命令,选择结点3,4作为输出,单击Simulate按钮;选择Simulate菜单中的后处理器Postprocessor子命令,在Expression列表框中编辑“V($4)一V($3)”,然后打开Graph选项卡,可画出差分放大电路共模输入双端输出波形,见图5。可见,波形属于噪声信号,且幅值极小,可忽略不计。因此,差分放大电路双端输出时,其共模抑制比KCNR趋于无穷大。如果再将图1所示的电路中发射极电阻R2改为恒流源,重复前面步骤,再分析共模特性,可得出结论:具有恒流源的差分放大电路的共模抑制比KCNR更高。    3 结 语   应用Multisim8软件对差分放大电路进行仿真分析,结果表明仿真与理论分析和计算结果一致,应用Multisim进行虚拟电子技术实验可以十分方便快捷地获取实验数据,突破了在传统实验中硬件设备条件的限制,大大提高了实验的深度和广度。利用仿真可以使枯燥的电路变得有趣,复杂的波形变得形象生动,并且不受场地(可以在教室、宿舍),不受时间(课内、课外)的限制,通过教师演示和学生动手设计、调试,不但可以使学生更好地掌握所学的知识,同时提高了学生的动手能力、分析问题和解决问题的能力。
  • 热度 25
    2015-3-14 20:10
    1487 次阅读|
    0 个评论
      概览   SPICE(针对集成电路的仿真程序)是加利福尼亚大学伯克莱分校开发的模拟电路仿真器,是作为CANCER(除射频电路外的非线性电路计算分析)程序的一部分进行开发的。   过去的50年中,众多公司开发了大量不同的SPICE变体(包括HSPICE和PSPICE)。   SPICE以网表形式定义电路并使用参数仿真电路特性。网表描述电路中的部件及其连接方式。SPICE可以仿真DC工作点、AC响应、瞬态响应以及其它有用的仿真项目。   目录 1.为何采用本教程作为PSPICE到Multisim间的过渡? 2.1.0PSPICE过渡至Multisim教程:放置电阻和电容 3.2.0PSPICE过渡至Multisim教程:增加电源部件 4.3.0PSPICE过渡至Multisim教程:接线部件 5.4.0PSPICE过渡至Multisim教程:设置仿真 6.5.0PSPICE过渡至Multisim教程:运行仿真 7.6.0PSPICE过渡至Multisim教程:结语   为何采用本教程作为PSPICE到Multisim间的过渡?   本教程的目标受众为那些使用过PSPICE的Multisim用户,我们的目标是为这些正在积极寻找如何在Multisim中创建和仿真电路的用户提供进阶指南。本教程除了讲述如何在PSPICE中完成任务,同时亦为您提供使用Multisim的简单设置步骤。无论您是否有过操作其它仿真工具的经验,本教程均可帮助您迅速上手Multisim。这一评价来自于我们在斯坦福大学创建的优秀教程,见此处。   Multisim   如果您是首次使用Multisim,您可能会很快发现仿真环境和原理图捕获环境非常相似,只是传统的多级步骤和复杂过程已被简化,仿真变得更加简单。   1.0PSPICE过渡至Multisim教程:放置电阻和电容   1.1打开软件   在PSPICE中,仿真设计开始前,用户通常需要通过下列步骤(程序PSPICE学生版原理图),打开“原理图”程序。   必须通过开始所有程序NationalInstruments电路设计套件11.0Multisim11.0这一步骤打开Multisim   1.2放置Op-Amp   在PSPICE中,用户需要打开“获取新部件”窗口,然后在描述框中搜索“opamp”。搜索到合适的型号后,将其连接到对应的设备符号上,然后单击“放置并关闭”。此时需要正确定向部件。双击Op-Amp,用户就可以设置相应的仿真参数。   在Multisim中放置部件: 1.选择放置部件。 2.在“选择部件”对话框中,按照下图红圈内的参数设置界面(图1)。图中选择的为模拟组中的模拟_虚拟类。 3.在“部件区域”中,选择OPAMP_3T_VIRTUAL(红圈)。 4.单击OK,在黄框内放置部件。 5.左击鼠标,在原理图区域放置OPAMP。 6.右击部件,选择“垂直翻转” 7.此时会出现图2所示的原理图。 图1选择部件界面 图2.运算放大器   1.3放置电阻和电容   在PSPICE中,此时已返回“使用获取新部件”,可在此搜索名称为“R”和“C”的部件(对应为电阻和电容)。当用户在原理图中放置了两个电阻和一个电容之后,需要双击各个部件设定及更改参数数值。   在Multisim中,放置电阻和电容: 1.选择放置部件。 2.在“选择部件”对话框中,按照红圈内给出的参数进行设置。图示为选择基本组和电阻类(见图3) 3.在“部件区域”中输入电阻值-本例中为2K(蓝色区域)。 4.单击OK,在黄框内放置部件。 5.左击鼠标,在原理图区域放置电阻。 6.同样返回至部件选择指南。 7.在“选择部件”对话框中,对应红圈内的参数进行设置。图示为选择基本组和电阻类。 8.在“部件区域”中输入电阻值-本例中为1K。 9.点击OK,在黄框内放置部件。 10.左击鼠标,在原理图区域放置电阻。 图3.放置电阻 11.选择放置部件。 12.在“选择部件”对话框中,对应红圈内参数进行设置。图示为选择基本组和电容类(图4)。 13.在“部件区域”中输入电容值-本例中为0.08u(蓝色区域)。 图4.放置电阻   14.用户的设计界面应如图5所示。 图5.第一阶段设计结束   2.0PSPICE过渡至Multisim教程:增加电源部件   2.1增加电源和接地   在PSPICE中,现在已返回“使用获取新部件”界面,在此处搜索AC电压源(对应标识为VAC)。此处需要查找名为ACMAG的参数,即AC幅值。放置部件。然后搜索名为“GND_EARTH”的接地标识。   在Multisim中放置源: 1.选择放置部件。 2.在“选择部件”对话框中,按照对话框提示进行设置:选择源组和信号电压源类。 3.在“部件区域”选择交流电压,然后放置在原理图中。其预配置为1V。 4.选择放置部件。 5.在“选择部件”对话框中,按照对话框提示进行设置:选择源组和电源类。 6.在“部件区域”中,选择地,然后放置在原理图中。 7.此时的设计应如图6所示。 图6.第二阶段设计结束   3.0PSPICE过渡至Multisim教程:接线部件   3.1接线过程   在PSPICE中,用户现在必须开始搜索并选择“绘制接线”按钮,或在绘图菜单中选择一个选项。此后方可连接不同节点。   Multisim采用无模式接线环境,允许用户方便绘制网络接线图: 1.在引脚附近悬停鼠标(如V1AC_Voltage源的+引脚)。鼠标靠近引脚时,会变成十字形图标。现在即可绘制到电阻R2的网络接线。 2.左击鼠标,会在引脚后出现红线。随着鼠标移动,红色网络(线)会随之移动。将红线移至另一部件引脚,然后左击完成连接。 3.重复利用该方法完成整个设计的接线,直至如图7所示。 图7.完成的原理图   4.0PSPICE过渡至Multisim教程:设置仿真   4.1设定分析   在PSPICE中,用户现在就可以建立分析。分析设置需要设置节点名称,在单独“分析界面”中选择特定分析类型然后设置起始频率(StarFreq),截止频率(EndFreq),十倍频扫描点数(Pts/Decade),和扫描类型(十倍频)。   在Multisim中,过程略有简化。 1.选择仿真仪器测量探针 2.在电路输出点单击鼠标左键以放置探针。该节点此时命名为“Probe1”。 3.双击黄色区域,然后在“RefDes”中,将探针名称“探针1”更改为“Vout”(图8)。 图8.放置测量探针   4.选择仿真分析AC分析…此时已打开AC分析对话框。   5.设置“起始频率(FSTART)”为10   6.设置“截止频率(FSTOP)”为1,单位为MHz   7.设置“10倍频扫描点数”为101   8.设置“垂直刻度”为“对数”   5.0PSPICE过渡至Multisim教程:运行仿真   5.1运行AC分析   在PSPICE中,为查看仿真数据,用户必须打开绘图窗口然后通过“添加画线”按钮或画线菜单,在坐标轴上绘制不同数值和不同参数。此外用户还须进行其它相关设置(如通过表达式创建对数坐标)。   在Multisim中,用户只需进行如下简单步骤:   1.在AC分析对话框,设置“垂直刻度”为“对数”   2.选中“输出”选项卡   3.在“电路变量”部分,选择参数“V(Vout)”。   4.单击添加按钮   5.单击仿真按钮。此时即可看到仿真数据(图9)。 图9.绘图仪中的仿真分析数据   6.为查找-3db点,首先须选择光标。首先在工具栏单击光标项。然后光标就会在Y轴顶端出现(图10所示的红框内) 图10.设置光标   7.右击Y轴上的绿色光标箭头。   8.选择设定Y值=   9.在值域内键入-3   10.单击Ok。光标就会自动移至-3dB点(图11)。 图11.-3dB点   6.0PSPICE过渡至Multisim教程:结语   恭喜您!经过本文一系列进阶步骤学习后,您现在已经可以使用Multisim进行原理图捕获和仿真了。   您也籍此了解了Multisim的一些简单功能。与PSPICE类似,许多高级功能用户也可轻松上手。使用Multisim最大特性就是,完成高级任务原来可以变得那么简单。
  • 热度 17
    2014-4-4 07:46
    994 次阅读|
    0 个评论
      今日事,今日毕! 但是自己还是没有做得到,无论是说到一周的计划还是昨天的任务。一周的计划就要结束了,可是自己却只完成了进度的一点点。 昨天我下载了**版的multisim10,从下午8点开始下载一直到睡觉前,整整两个小时!我能说自己效率太慢了?今天早上起床后就匆匆的洗漱,敲键盘。看来只能今天再安装multisim软件了,下面我上传一下自己收藏的multisim。 进度:把电路课本还有multisim浏览一遍。还有下周的进度怎么规划啊?
  • 热度 20
    2014-4-2 22:22
    1210 次阅读|
    1 个评论
    我去,刚才花了二十分钟,打的一篇博文又提交失败。看来下回得 先做个Word,然后再copy过来了
相关资源