tag 标签: IGBT

相关帖子
相关博文
  • 热度 5
    2023-8-17 17:01
    361 次阅读|
    0 个评论
    汽车芯片按其功能可分为控制类(MCU和AI芯片)、功率类、传感器和其他(如存储器)四种类型。市场基本被国际巨头所垄断。人们常说的汽车芯片是指汽车里的计算芯片,按集成规模可分为MCU芯片和AI芯片(SoC芯片)。功率器件集成度较低,属于分立器件,主要包括电动车逆变器和变换器中的IGBT、MOSFET等。传感器则包括智能车上的雷达、摄像头等。 一、车规级MCU芯片 车规级MCU芯片是汽车电子控制单元(ECU)的重要组成部分,广泛用于车内几十种次系统中,如悬挂、气囊、门控等,是汽车电子系统内部运算、处理的核心。MCU芯片按照CPU一次处理数据的位数分为8、16和32位MCU。 (1)8位MCU:具有简单耐用、低价的优势,提供低端控制功能,如风扇控制、空调控制、雨刷、天窗、车窗升降、低端仪表板、集线盒、座椅控制、门控模块等。 (2)16位MCU:提供终端控制功能,用于动力系统和底盘控制系统,如引擎控制、齿轮与离合器控制和电子式涡轮系统、悬吊系统、电子式动力方向盘、扭力分散控制和电子泵、电子刹车等。 (3)32位MCU:工作频率最高,处理能力、执行效能更好,应用也更广泛,价格也在逐渐降低;提供高端控制功能,在实现L1和L2的自动驾驶功能中扮演重要角色。 据统计,每辆传统汽车平均用到70颗以上MCU,智能电动汽车则超300颗。不过随着整车电子架构的集中化趋势加速,单车MCU的用量和种类也将出现“缩减”。MCU的性能将进一步提升,高端MCU将逐渐替代部分低端MCU的需求。 二、AI芯片 AI芯片是未来智能化汽车的“大脑”。这类芯片一般是一种集成了CPU、图像处理GPU、音频处理DSP、深度学习加速单元NPU以及内存和各种I/O接口的SOC芯片,不同于以CPU运算为主的MCU。在汽车中,主要在智能座舱和自动驾驶两个方面使用SoC芯片。 未来智能座舱所代表的“车载信息娱乐系统+流媒体后视镜+抬头显示系统+全液晶仪表+车联网系统+车内乘员监控系统”等多重体验,都将依赖于智能座舱的SoC芯片。 自动驾驶芯片是指可实现高级别自动驾驶的SoC芯片,通常具有“CPU+XPU”的多核架构。L3及以上的车端中央计算平台需要达到500+TOPS的算力,仅具备CPU处理器的芯片无法满足这一需求。自动驾驶的SoC芯片上通常需要集成除CPU之外的一个或多个XPU来进行AI运算。用于AI运算的XPU可以选择GPU/FPGA/ASIC等。 GPU、FPGA和ASIC在自动驾驶AI运算领域各有优势:CPU通常是SoC芯片的控制中心,其优点在于调度、管理、协调能力强,但计算能力相对有限。而对于AI计算,人们通常使用GPU/FPGA/ASIC进行加强:1)GPU适合数据密集型应用进行计算和处理,尤其擅长处理CNN/DNN等图形类机器学习算法。2)FPGA对RNN/LSTM和强化学习等顺序类机器学习算法具有明显优势。3)ASIC是面向特定用户算法需求设计的专用芯片,具有体积更小、重量更轻、功耗更低、性能提高、保密性增强以及成本降低等优点。 三、功率器件 功率半导体器件是用于电力转换和控制的半导体器件。其典型应用场景包括变频、变压、变流、功率放大和功率管理等,主要类型为IGBT和MOSFET。在具体应用上,燃油车一般使用低压MOSFET,其衬底材料为Si。相比之下,BEV对功率器件的性能要求更高,IGBT和高压MOSFET更为主流。 IGBT(绝缘栅双极型晶体管)是一种全控型电压驱动的大功率电力电子器件,由双极性晶体管(BJT)和绝缘栅场效应管(MOS)组成。IGBT的特点是兼具了BJT的导通电压低、通态电流大、损耗小和MOS的开关速度高、输入阻抗高、控制功率小、驱动电路简单等优点。在电动汽车中,IGBT的应用主要集中在三个方面:首先,在电控系统中,IGBT模块将直流转换为交流,驱动汽车电机(电控模块);其次,在车载空调控制系统中,负责小功率直流/交流逆变,该模块的工作电压不高,单价相对也低一些;最后,在充电桩中,IGBT模块被用作开关使用。 IGBT最常见的形式是模块,主要由IGBT芯片、FWD芯片、主端子、辅助端子、浇注封装材、绝缘基板、金属基、树脂外盖和树脂外壳等组成。多个芯片以绝缘方式组装到金属基板上,采用空心塑壳封装,与空气的隔绝材料是高压硅脂或者硅脂,以及其他可能的软性绝缘材料。 ​ 从功能安全角度来看,IGBT模块具有以下优点:(1)多个IGBT芯片并联,使得IGBT的电流规格更大;(2)多个IGBT芯片按照特定的电路形式组合,如半桥、全桥等,可以减少外部电路连接的复杂性;(3)多个IGBT芯片处于同一个金属基板上,等于是在独立的散热器与IGBT芯片之间增加了一块均热板,工作更可靠;(4)模块中多个IGBT芯片之间的连接与多个分立形式的单管进行外部连接相比,电路布局更好,引线电感更小。因此,模块的外部引线端子更适合高压和大电流连接。 四、传感器类芯片 汽车传感器主要分为两大类,一类是车辆感知传感器,包括速度/位置传感器、低/中压压力传感器、高压传感器、加速度传感器、角速度传感器、磁力计和温度传感器。另一类是环境感知传感器,包括氧、气体传感器、车载摄像头、超声波雷达、毫米波雷达和激光雷达。 ​ 传感器类芯片 五、存储器 汽车传感器存储器分为闪存和内存,其中闪存包括NANDFlash和NORFlash,内存包括DRAM和SRAM。随着智能化的发展,ADAS和信息娱乐系统产生的数据将不断增加,根据CounterpointResearch的估计,未来十年,单车存储容量将达到2TB-11TB。
  • 2023-8-14 14:43
    0 个评论
    安世 | Nexperia (安世半导体)推出新款600 V单管IGBT,可在电源应用中实现出色效率 基础半导体器件领域的高产能生产专家 Nexperia (安世半导体)今日宣布,将凭借600 V器件系列进军绝缘栅双极晶体管(IGBT)市场,而30A NGW30T60M3DF将打响进军市场的第一炮。 Nexperia在其庞大的产品组合中增加了IGBT,满足了市场对于高效高压开关器件不断增长的需求以及在性能和成本方面的要求。这些器件有助于提高电源转换和电机驱动应用中的功率密度,包括工业电机驱动(例如5到20 kW (20 kHz)的伺服电机)、机器人、电梯、机器操作手、工业自动化、功率逆变器、不间断电源(UPS)、光伏(PV)串联组件、EV充电以及感应加热和焊接。 IGBT是一项相对成熟的技术。尽管如此,这些器件的市场预计将随着太阳能面板和电动汽车(EV)充电器的日益普及而有所增长。 Nexperia 的600 V IGBT采用稳健、经济高效的载流子储存沟槽栅场截止(FS)结构,在最高175℃的工作温度下可提供超低导通和开关损耗性能与高耐用性。 这可提高功率逆变器、感应加热器、焊接设备和工业应用(如电机驱动和伺服、机器人、电梯、机器操作手和工业自动化等)的效率和可靠性。 设计人员可以在中速 (M3) 和高速 (H3) 系列 IGBT 之间自由选择。这些 IGBT 采用非常紧密的参数分布设计,允许多个器件安全地并联连接。此外,与竞品器件相比其热阻更低,因此能够提供更高的输出功率。这些 IGBT 还并联了全电流反向软快恢复二极管。这意味着它们适用于逆变器,整流器及双向变换电路应用,在过流条件下更加稳健。 Nexperia绝缘栅双极晶体管和模块业务部门总经理Ke Jiang博士表示: “Nexperia通过发布IGBT,为设计人员提供了更多的电源开关器件选择,以满足广泛的电源应用需求。 IGBT是对Nexperia现有的CMOS和宽带隙开关器件系列产品的理想补充,Nexperia由此可为功率电子设计师提供一站式服务。 ” 这些 IGBT 采用无铅 TO247-3L 标准封装,并通过严苛的 HV-H3TRB 质量标准,适合室外应用。买电子元器件现货上唯样商城。 Nexperia 计划在本次产品发布后将推出 1200 V IGBT 系列器件。
  • 热度 2
    2023-7-4 22:42
    287 次阅读|
    0 个评论
    深度剖析IGBT栅极驱动注意事项 IGBT晶体管的结构要比 MOSFET 或双极结型晶体管 (BJT) 复杂得多。它结合了这两种器件的特点,并且有三个端子:一个栅极、一个集电极和一个发射极。就栅极驱动而言,该器件的行为类似于 MOSFET。它的载流路径与 BJT 的集电极-发射极路径非常相似。图 1 显示了 n 型 IGBT 的等效器件电路。 图 1. IGBT 的等效电路 图 2. IGBT的导通电流 为了快速导通和关断 BJT,必须在每个方向上硬驱动栅极电流,以将载流子移入和移出基极区。当 MOSFET 的栅极被驱动为高电平时,会存在一个从双极型晶体管的基极到其发射极的低阻抗路径。这会使晶体管快速导通。因此,栅极电平被驱动得越高,集电极电流开始流动的速度就会越快。基极和集电极电流如图 2 所示。 图 3. IGBT的关断电流 关断场景有点不同,如图 3 所示。当 MOSFET 的栅极电平被拉低时,BJT 中将没有基极电流的电流路径。基极电流的缺失会诱发关断过程;不过,为了快速关断,应强制电流进入基极端子。由于没有可用的机制将载流子从基极扫走,因此 BJT 的关断相对较慢。这导致了一种被称为尾电流的现象,因为基极区中存储的电荷必须被发射极电流扫走。 1 kW) 电路。谐振拓扑最大程度降低了开关损耗,因为它们要么是零电压开关,要么是零电流开关。 较慢的 dv/dt 速率可以提高 EMI 性能(当涉及这方面问题时),并在导通和关断转换期间减少尖峰的形成。这是以降低效率为代价的,因为此时导通和关断的时间会比较长。 MOSFET 存在一种称为二次导通的现象。这是由于漏电压的 dv/dt 速率非常快,其范围可以在 1000–10000 V/us 之间。尽管 IGBT 的开关速度通常不如 MOSFET 快,但由于所使用的是高电压,因此它们仍然可以遭遇非常高的 dv/dt 电平。如果栅极 电阻 过高,就会导致二次导通。 图 4. 带有寄生 电容 的IGBT 在这种情况下,当 驱动器 将栅极电平拉低时,器件开始关断,但由于 Cgc 和 Cge 分压器的原因,集电极上的电压升高会在栅极上产生电压。如果栅极电阻过高,栅极电压可升高到足以使器件重新导通。这将导致大功率脉冲,从而可能引发过热,在某些情况下甚至会损坏器件。 该问题的限制公式为: 其中, ● dv/dt 为关断时集电极上电压波形上升的速率 ● Vth为栅极的平台电平 ● Rg为总栅极电阻 ● Cgc 为栅极-发射极电容 应注意,数据表上的 Ciss 是 Cge 和 Cgc 电容的并联等效值。 类似地,Rg 是栅极驱动器阻抗、物理栅极电阻和内部栅极电阻的串联和。内部栅极电阻有时可根据数据表计算出来。如果计算不出来,可通过以下方式进行测量:使用 LCR 电桥并使集电极-发射极引脚短路,然后在接近开关频率的频率下测量等效串联 RC。 如果使用的是 FET 输出级,则可以在其数据表中找到驱动器阻抗。如果无法在数据表上找到,可通过将峰值驱动电流取为其额定 VCC 电平来进行近似计算。 因此,最大总栅极电阻为: 最大 dv/dt 是基于栅极驱动电流以及 IGBT 周围的电路阻抗。如果将高值电阻器用于栅极驱动,则需要在实际电路中进行验证。图 5 显示了同一 电机 控制电路中三个不同 IGBT 的关断波形。在此应用中,dv/dt 为 3500 V/s。 图 5. 三个IGBT的关断波形 对于该情况而言,IGBT #2 的典型 Cgc 为 84 pF,而阈值栅极电压为 7.5 V(在 15 A 的条件下)。 利用上述公式,该电路的最大总栅极电阻为: Rg < 25.5 Ω。 因此,如果内部栅极电阻为 2Ω,驱动器阻抗为 5Ω,则所使用的绝对最大栅极电阻应为 18Ω。实际上,由于 IGBT、驱动器、板阻抗和温度的变化,建议采用一个较小的最大值(例如 12Ω)。 买电子元器件现货唯样商城 图 6. 等效栅极驱动电路 去除外部栅极电阻器可能会获得最佳的高频性能,同时确保不会发生二次导通。在某些情况下,这可能会起作用,但也可能由于栅极驱动电路中的阻抗而导致振荡。 栅极驱动电路为串联 RLC 谐振电路。电容主要源于 IGBT 寄生电容。所示的两个电感则源自 IGBT 和驱动器的板走线电感与焊线电感的组合。 在栅极电阻很小或没有栅极电阻的情况下,谐振电路将会振荡并造成 IGBT 中的高损耗。此时需要有足够大的栅极电阻来抑制谐振电路,从而消除振荡。 由于电感难以测量,因此也就很难计算适合的电阻。要最大程度降低所需的最小栅极电阻,最佳方案是采用良好的布局程序。 驱动器与 IGBT 栅极之间的路径应尽可能短。这适用于栅极驱动的整个电路路径以及接地回路路径。如果控制器不包括集成驱动器,则将 IGBT 驱动器置于 IGBT 的栅极附近要比将栅极驱动器的输入置于控制器的 PWM 输出端更为重要。从控制器到驱动器的电流非常小,因此相比从驱动器到 IGBT 的高电流和高 di/dt 电平所造成的影响,任何杂散电容的影响都要小得多。短而宽的走线是最大程度降低电感的最佳方式。 典型的最小驱动器电阻范围为 2Ω至 5Ω。这其中包括驱动器阻抗、外部电阻值和内部 IGBT 栅极电阻值。一旦设计好板的布局,即可确定并优化栅极电阻值。 本文给出了最大和最小栅极电阻值的指南。在这些限值之间有一个取值范围,藉此可以对电路进行调谐,从而获得最大效率、最小 EMI 或其他重要参数。在电路设计中取一个介于这些极值之间的安全值可确保设计的稳健。 参考文献 《 Power Semiconductor Device s》(功率半导体器件),B. Jayant Baliga,P WS Publishing Company,Boston。ISBN 0−534−94098−6
  • 热度 3
    2023-6-26 00:07
    346 次阅读|
    0 个评论
    针对电动马达控制,在指定绝缘栅双极晶体管 (IGBT) 时的考虑 电动马达 IGBT Bourns 针对所有的应用,人们越来越注意电动马达的运作效率;因此,对高效率驱动器的需求变得日益重要。此外,使用马达驱动的设计,例如电动马达、泵和风扇,需要降低整体成本,且需要减低这些电动马达应用中的能耗;因此,为电动马达及其的驱动指定高效率的设计,以适合每项特定应用变得更加重要。 面对今日要求更高的电压或更高的电流以及更低频率的电动马达驱动应用,广为人知且被广泛使用的开关组件解决方案绝缘栅双极晶体管 ( IGBT ) 即是一项绝佳的选择。因为多数马达在较低频率运作,要求可靠的安全工作区(SOA)和短路额定值,且需要将效率最大化,因此具有共同封装二极管的 IGBT 非常适合这些应用。包括 IGBT 的电流处理能力和峰值电压额定值等因素,决定一款特定的IGBT 是否能够支持马达的负载要求。 本应用手册说明在马达控制上,采用 IGBT 的各项优点,讨论 IGBT 在工业马达驱动设计中所扮演的角色、开关和传导性如何影响 IGBT 的选择,以及了解短路耐受时间的重要性。文中以重点方式阐述为何使用 Bourns 先进的离散式 IGBT 进行设计,有助延长工业系统应用中的 驱动器 和电动马达的寿命,并可提高效率。 将工业马达驱动器的效率最大化 典型的马达驱动器由若干部分组成。图 1 显示一个典型的马达驱动应用,这个马达驱动应用使用来自 AC电源线的电源,并依照用户输入,将电源用于电动马达。使用 IGBT 制作出一个功率因子校正(PFC)整流器,如同不间断电源 (UPS) 中的设计。马达制动电路由 IGBT 组成,这些 IGBT 在马达停止时耗散马达的功率或将多余的能量传送回 AC 输入,以实现再生制动。马达驱动逆变器将储存在 电容 器中的 DC 电压能量转换为指定的电压和频率的 AC 波形,以控制马达到达所需要的速度和扭矩。 图 1 典型的马达驱动方块图,使用功率因子校正 (PFC) 输入整流器 为了在不同的马达驱动设计部分将 IGBT 维持在它的 SOA 额定值以下,必须移除晶体管封装的热能。Bourns® BID IGBT 系列采用更好的散热 TO-247 功率封装。对 IGBT 和 FRD 中的开关瞬态和正向传导所引起的功率损耗,这些封装提供了有效的散热。在马达控制应用中,对环境温度高,气流减少或不可用的地方,设计人员需要思考功耗对整个系统的影响。因为 Bourns® IGBT 是专为高效率设计的,它们所产生需要消散的热量较少。这样有助于减小尺寸和成本,且可简化热管理设计。 开关和传导表现 IGBT 的开关和传导表现随组件结构相关。Bourns® IGBT 的非对称结构有助于优化马达控制应用中的 ON 状态损耗和开关速度。这种结构的重要特色是由一个 n+ 型缓冲区所产生的场停止层,这个 n+ 型缓冲区添加在 n- 漂移区下方,位在较低的 p-掺杂层的上方。这个缓冲区的用途是支持电场并允许更薄的 n-漂移区,这大大有助于减少传导损耗。 图 2 显示了开关损耗 (E off ) 和传导损耗 (V CE(sat) ) 之间的整体折衷。这说明系统要求攸关和选定合适的组件,以符合特定马达系统控制器的需求。Bourns 的新一代 IGBT 使用先进的 Trench-Gate FieldStop(TGFS)技术,可提高单元密度来增强V CE(sat) /E off 曲线的性能。 图 2 开关损耗 (E off ) 和传导损耗 (V CE(sat) )的权衡 工业环境中的短路 在马达控制应用中,从 DC 电压总线到地面(如 DC 电流)或从一个马达相位到另一个相位或接地,IGBT开关可能经历短路路径。IGBT 必须能够在终端应用检测这些异常所需要的时间间隔内承受这些异常。马达通常能够在相对较长的时间内(几毫秒到几秒)吸收非常高的电流水平;但是,经常指定用于马达驱动逆变器的 IGBT 通常具有微秒级的短路耐受时间。某些 Bourns® IGBT 型号具有 10 µs 的短路耐受能力。 马达控制应用需要高度的 健性和可靠性,因为它们在严厉的条件下运作,对 IGBT 施 加高 度的应力,並知这会导致瞬态短路状况。 具有更高短路电流水平和 5 µs 范围内的必要短路耐受时间的 IGBT(例如, Bourns® BIDNW30N60H3)是降低传导损耗的权衡,亦有助于降低整个 BOM 成本。一个好消息是在短路耐受时间上,某些差异被IGBT 设计和封装技术的改善所抵消。较高的跨导性和较低的热阻力会减低传导损耗,提高应用效率,为马达控制应用设计带来好处,即使所选择的 IGBT 的短路耐受时间较短。 IGBT 权衡 若所选择的组件因为开关损耗较低而提供高水平的开关频率,这会产生较高的传导损耗。传导损耗若较高,会导致较高的功耗,因而需要更大且往往是大体积的 散热器 ,这会增加系统成本及空间。 相反地,传导损耗较低的组件可以在较低频率有效率地运作,但它的短路耐受能力会减低。图 3 说明了这种权衡。 图 3 参考有关的安全工作区,传导损耗、开关损耗和短路耐受能力的马达控制设计权衡 安全工作区 (SOA) 的考虑 对在电流和电压最大值附近工作的 IGBT,需要仔细思考如何安全地将这些参数维持在数据表的规定值内。主要的重点是将集电极的电流维持在最大值以下,且同时将集电极到发射极的电压维持在数据表规定的数值以下。当在正向偏置安全工作区(FBSOA)的正向偏置条件下工作时,需要依据脉冲宽度和热设计的阻抗来额外思考最大脉冲集电极电流。对最大集电极-发射极电压,FBSOA 定义了最大饱和集电极电流,通常用于感性负载。买电子元器件现货上唯样商城。在反向偏置安全工作区(RBSOA)的反向偏置条件中,最大电流随关断期间集电极和发射极之间的峰值电压有关。遵守最大限制是必要的,以在最大的结点温度来保护快速恢复二极管。 结论 对电动马达控制应用中的逆变器使用 IGBT 有助设计人员实现系统成本缩减目标,因为这些组件有较小的芯片尺寸,可实现更高的电流密度设计。尤其是,Bourns® 离散式 IGBT 支持更高温的运作,并提供更好的能力,可移除 IGBT 封装的热能。Bourns® IGBT 采用具有热效率的设计,提供更低的运作损耗、更大的过载,以及更高的短路电流耐受能力等优点,可提供优越的开关设计解决方案。 此外,优化是必要的,以在传导损耗和开关损耗之间平衡 IGBT,并依据最终产品所使用的马达类型来调整特定的应用需求。对于马达控制应用,在 TO-247足迹中,被共同封装的 600 V/650 V Trench-Gate Field-Stop (TGFS) IGBT+FRD 被认为是理想的组件解决方案。由于总功耗较低,这些 IGBT 组件提供更高的热性能、低 VCE(sat) 和高效能,与上一代的平面 IGBT 相比,具有很高的可靠性。
  • 热度 4
    2023-5-30 16:45
    368 次阅读|
    0 个评论
    工业、车用领域的IGBT需求仍然吃紧,根据市场消息,在本月安森美的IGBT供应紧缺,交期仍在40周以上,无明显缓解。富昌电子公布的《2023Q1芯片市场行情报告》指出,意法半导体、英飞凌、仙童半导体、Microsemi、IXYS的IGBT交期与2022Q4的交期一致,最长在54周。 IGBT的短缺预计会持续到2024年,导致IGBT缺货的原因可以简单归为三点,其一是产能受限,扩增缓慢;其二是,车用需求旺盛,特斯拉砍75%碳化硅用量大幅提升IGBT需求。其三是,当前太阳能逆变器采用IGBT的比重大幅提升,绿色能源市场拉动IGBT市场。 0 1 IGBT产能受限,扩增缓慢 大部分6英寸、8英寸的晶圆厂折旧,由于成本效益问题,很少有6英寸、8英寸晶圆厂会扩大IGBT的产能。不过有部分12英寸的晶圆厂已经开始生产IGBT,比如电装和联电子公司联合半导体日本有限公司(USJC)合作在12英寸晶圆厂上生产IGBT的计划将于2023年上半年开始,还有英飞凌、安森美收购的12英寸晶圆厂在IGBT生产上有所进展。 不过这些扩产还需要段时间。据悉,英飞凌德国新厂需要到2026年才能正式量产,安森美的2023年产能已经全部售罄,有客户在2022年下半年就已经基本敲定了2023年全年供货。 尽管IGBT客户和订单规模在增长,但到下游晶圆代工厂的产能调节仍需要时间,晶圆代工厂的产能主要集中在订单规模大且稳定的消费电子产品上。短期内,IGBT的缺货情况难缓解。 还有,氮化镓和碳化硅复合材料的火热市场,也改变了晶圆厂的路线。新型复合材料除了在车用领域,5G、AIoT、新能源市场都呈现出巨大的潜力。IGBT在这方面也受到了挤压。而且,尽管IGBT的6英寸、8英寸的IGBT生产技术成熟,但该行业长期由国际大厂如英飞凌、安森美、东芝、三菱等大公司主导,在12英寸晶圆厂生产IGBT面临的挑战也将更大,在技术层面、材料、制造成本问题都不是新来者能轻松入局的。 0 2 车用需求旺盛,特斯拉砍75%碳化硅用量 电动车使用IGBT的数量是传统燃油车的7-10倍,高达上百颗。再加上特斯拉在今年AI投资日上宣布下一代车型将减少75%的SiC使用量,也使得IGBT车用需求更加紧俏。IGBT的制造成本低于碳化硅,由于架构简单,故障率较低,IGBT还具有更好的电容性能和更好的抗过压能力,适用于大功率、大电流的应用场景。 有分析机构指出,碳化硅+IGBT混合模块方案可能降低采用碳化硅的电驱系统成本,是潜在方案之一。 据悉,由于IGBT的缺货,汉磊集团掌握IGBT芯片组件龙头英飞凌大单,在年初调涨了IGBT产线的代工价格10%。 0 3 绿色能源市场拉动IGBT需求 国家在“十四五”期间将坚持清洁低碳战略方向,光伏发电作为绿色环保的发电方式,符合国家能源改革以质量效益为主的发展方向。根据中国光伏行业协会预测,2025 年全球光伏逆变器新增装机量有望达 330GW,假设 2025 年光伏逆变器替换装机量为 42GW。按照 IGBT 占组串式逆变器 BOM 成本的 18%,以及占集中式逆变器 BOM 成本的 15%计算,预计 2025 年光伏逆变器 IGBT 市场规模将超百亿。 国内IGBT供应厂商斯达半导体,在2022年业绩预告中表示,IGBT模块以及分立器件在光伏发电和储能领域大批量装机并迅速上量;比亚迪半导体在去年6月份宣布,其IGBT模块已批量出货于光伏领域。 有分析机构的数据统计,2022年全球光伏新增装机达到244GW,又根据国际能源署 (IEA) 的数据,到2030年,道路上将有1.25亿辆电动汽车。 多个绿色能源市场的推动,使得IGBT市场规模正在扩大,不过由于多重因素导致,IGBT的供应缓解还需要一段时间。 关注公众号“优特美尔商城”,获取更多电子元器件知识、电路讲解、型号资料、电子资讯,欢迎留言讨论。
相关资源