tag 标签: 振动

相关博文
  • 2024-3-7 17:38
    1 次阅读|
    0 个评论
    在为杂志装订机开发新产品的过程中,作为 印刷后处理机械领域的全球领导者 ,Müller Martini AG公司发现了传感器故障的问题。通过使用虹科MSR 微型加速度数据记录仪,成功地确定了故障的原因。 新杂志装订机中的三刀修整装置的故障部件是边缘传感器,它们用于检测产品在切割前的位置。在之前的使用中,它们一直没有故障,但是在测试阶段时在客户的场地上出现了故障。对故障传感器的分析显示传感器元件出现了机械损坏。 初步怀疑故障原因为振动。然而,由于机器内部运动序列非常动态,可能存在多种导致问题的原因,因此需要找到一种记录传感器振动的方法。 测量的目的是尽可能准确地确定可能造成干扰的来源,以便做出正确的结论。同时,迫切需要验证采取的措施是否有效。 经过网络搜索,借助瑞士技术公司MSR Electronics GmbH的网站进行在线配置,并与顾问进行电话沟通,最终选择了虹科MSR165系列微型数据记录仪作为合适的测量设备。这一精心的选择为他们解决问题提供了有力的支持,并为他们解决这一难题提供了确凿的证据。 关于故障排除:用于冲击和振动的微型数据记录仪 用于冲击和振动的虹科MSR165数据记录器能够每秒执行1600次测量,可持续五年。其核心传感器元件是高分辨率的三轴数字加速度计。它非常适合进行振动测量和冲击监测,例如用于运输监测、故障诊断和负载测试等领域。 通过虹科MSR165,可以实现对冲击的监测,最高可达到±15 g或±200 g,并记录事件前的32个测量值。记录仪的存储容量超过200万个测量值,足以记录超过1万次冲击,甚至在需要的情况下,可以持续很长时间。通过MicroSD卡,存储容量甚至可以增加到超过10亿个测量值(1000万次冲击)。所有数据可以通过USB或MicroSD卡快速传输到计算机。虹科MSR165附带PC软件,用于配置和分析数据,以及虹科MSR ShockViewer软件。这款功能强大的评估软件用于高级分析和图形显示以冲击模式获取的数据,以及自动生成报告。 测量和调查结果 数据记录仪使用双面胶带牢固地固定在受影响的新机器传感器上(图2)。在操作期间,x轴方向上测得高达218 g的加速度(图3)。通过与旧机器上的数据记录仪进行比较测量(图4),结果显示仅有约35 g的加速度(图5)。因此可以清楚地理解为什么新机器上的传感器会遭受损坏。 通过逐个关闭子系统,迅速确定这些巨大的加速度是由气动止动装置引起的 。现在对这些止动装置进行了更详细的分析,并列出了所有的差异。 错误的原因迅速被排除 阀门和止动装置之间的软管长度成为了关键。通过采用与旧机器上相同长度的软管,现在加速度恢复到了可比较的水平。同时,传感器制造商优化了传感器,以适应仍然存在的相对较高加速度。此后,再也没有发生传感器故障。 结论 如果没有数据记录仪,很难在一个工作日内找到新机器上传感器故障的原因。 因此,这些数据记录仪不仅是一种理想的辅助工具,而且在故障诊断中节省了大量时间,尤其是在处理与冲击、振动和加速相关的机械问题时。 更多信息请访问: honglusys.com/ ,如果您想了解产品,技术,商务等任何问题,请直接点击 https://t.dustess.com/KXk3E1kQ/
  • 热度 17
    2013-9-9 15:18
    2114 次阅读|
    0 个评论
       从光源或振动源获得环境能量的方法可以使低功耗设计免除传统电力线和电池的束缚。    要 点   ·小型太阳能板是最常见的能量采集器;   ·今后,使用压电技术和热梯度技术将更普遍;   ·只有极低功耗的系统才能依靠采集的能量得以生存。       很多系统如小型无线连网传感器节点和消费市场上的低成本计算器对电源有严格限制,这涉及到远程位置、成本考虑、便携程度的需求以及其他因素。另外,转向无线通信的大趋势淘汰了系统中很多有线电缆,因而设计师希望能使系 统脱离电源线和充电器的束缚,而采用能量采集器(Energy harvester)。这种小型装置可将大多数工作环境中的能量转化为适宜的电能。最常用的能量采集器是小型太阳能电池,或将机械振动转化为电能的电磁装置。   在靠近电力线的环境中也有能量采集器的用武之地,如工厂车间。Perpetuum 公司是一家能量采集器供应商,它的 CEO  Roy Freeland 指出:在连网的机器监控应用中,初始安装费用在总系统费用中占据相当大的比例。“将工厂的电源以及连接到传感器和发射器上的费用相当于监控设备总安装费用的 80%。”与之相比,安装带有磁性夹的内含式电源装置,人们只需走到某台机器前,然后将该装置扣闩在一定位置上即可。   当然,电池也可以使系统免除电源线的麻烦,但由于成本的原因限制了系统的工作寿命。在两年使用期以后,振动能量采集器便能优于锂电池(图 1,参考文献 1)。如果你的设备寿命在10年以上,则振动能源或太阳能能源就要好于任何电池技术。在系统整个生命周期的拥有成本中,劳动力成本也会增添一种起抑制使用作用的额外费用,因此最好能免除更换电池的工作。   从不利的一面来看,依赖于采集能量的系统其功耗必须尽量低。无线传感器制造商 EnOcean 公司产品系列经理 Wolfgang Heller  警告说,不能脱离电源来设计无线传感器网络。“我们与很多客户讨论过这个问题,他们有自己的无线电设备,只打算购买能量采集器。结果是,他们自己的无线电设备功耗要比我们设计的大上 100倍或1000倍。可见,小型能量采集器并不能用于所有无线电设备。”   EnOcean 公司生产的网络结点可以从几种能量采集器获得能源,包括光开关致动器、直线运动变换器、机械振动、热梯度,以及阳光。EnOcean 公司的 PTM 200 光开关致动器整合有一个由磁铁和线圈构成的继电器,当切换开关使灯出现明灭变化时,就会改变线圈中的通量,产生一个电压(图 2)。该开关模块能将开、关指令以无线方式传送给室内的照明器具,在智能建筑中很有用(参考文献 2)。它也可以大大降低建筑中的接线工作费用。如果室内灯光都处于一个局域无线网络中,就不需要电工去安装了。热梯度发电装置是那些在生产过程中产生热量的工业场合使用的候选装置。热能采集装置在六个月内即可进入商业应用。 甩掉电网   EnOcean 公司还制造一种太阳能供电的 STM100 网络结点(图 3)。该种模块的太阳能电池分为两个部分,一部分比另一部分要大。较小的部分是为一个小型电容器充电,它在快速起动/苏醒模式下为传感器和 RF 电路供电。较大的部分则为一只超级电容器充电,在黑暗的时间段里为系统供电。Heller 称:“如果我们只有一个太阳能电池,则它可能要花几个小时才能开始供电,因为超级电容器需要很多时间才能达到所需电压电平。因此,我们用小部分太阳能电池为快速起动模式供电,那么我们就能实现在黑暗环境下数天的运行。”   EnOcean 的太阳能供电模块采用了一种多晶硅太阳能电池。多晶硅电池将太阳能转换为电能的效率为 11%~16%,无电力网地区的民用和工业用太阳能板系统是人们很熟悉的装置。另一种常见的太阳能电池是非晶硅电池,但它的效率只有多晶硅的一半(8%)。除了转换效率低的缺点以外,在阳光直射下非晶硅电池的转换效率每年还要衰减 15% ~ 35%。尽管有这些明显的缺点,但非晶硅的应用仍很普遍,因为它们的成本要比多晶硅低一个数量级,这对大批量消费电子来说,是一个显著优势。例如,一块典型的55mm×11mm 多晶硅电池价格为 3 美元,而同样一块非晶硅电池只有不到 25 美分。采用非晶硅电池供电的常见电子设备是太阳能计算器,如德州仪器公司生产的产品。   Russ Rosenquist 是德州仪器公司计算器产品高级设计师,他把太阳能电池的选择细分为两个部分,一部分是在计算与显示所需的基础上要求为系统提供多大能量,另一部分是在预期工作环境中需要多大尺寸的太阳能电池才能产生这些能量。计算器的典型应用环境有两种,一种是使用荧光灯的教室,一种是使用较暗白炽灯的旅店房间。Rosenquist 说:“我们努力设计出能在现有光线最暗的工作场所或学校中使用的计算器。这 里有个限制:在某些地方人们可以看到计算器的显示,但其光照却不足以提供产品足够的工作能量。我们一般把光照低限设计为 50lux~ 75 lux。此时,你能看到漂亮的房间,而不至于黑得看不见室内的东西。这是我们采用大小适合我们的计算器占位面积的无晶硅板所能获得的最低限度的光照。”另一种光照基准是希望在光照良好的环境中实现,在美国,大多数教室的光照等级是 200lux ~ 500 lux。他说:“教室是光照良好的环境。”除了成本较低以外,非晶硅电池的另一个优点是,在荧光灯和白炽灯照明下,非晶硅电池的效率高于多晶硅电池。Rosenquist 称非晶硅电池对不同波长光线的响应是不同的,“从 50 lux 白炽灯获得的能量要多于 50 lux 荧光灯,大约多 25%。”   Rosenquist 还解释说,用户有时有可能会在强烈阳光下使用计算器。在普通室内光线下,太阳能电池产生的电压不到 1.5V,而在强烈阳光下,产生的电压会高于 2V。他说:“我们用一支 LED 与电池并联,这样,在强烈光照下,LED 可以吸收大量额外电流,将电压保持在 1.5V。”LED 因而成了一种简单而廉价的电压箝位装置。   随着越来越多的设计工程师采用能量采集器作为电源,设计低耗能系统就成为与选择能源同等重要的事情(见附文“太阳能计算器为低功耗设计提供指南”)。(关于极低功耗系统设计的问题,请参见参考文献 3。) 振动是好事   并非所有运行环境中都有可靠而稳定的光照。例如,机器监控的传感器就可能没有可靠的光照,但却有充足的振动能量。振动能量采集器可以是机电式或压电式的,机电式采集器较常见。Perpetuum 公司的 Freeland 称,该公司最初曾致力于压电技术,但最终发现,以机器和建筑的振动幅度与频率,压电技术无法产生足够的能量。于是,Perpetuum 转向机电式的,包括线圈、磁铁和谐振梁,设计出一种能从不费力的现有振动中产生足够电量的发电机。“一般的机器都存在振动,甚至包括家用冰箱:欧洲的振动为 50 Hz,美国是 60 Hz,或 100Hz ~ 120Hz。在这些频率下如果有 0.5g ~ 0.1g振动,就足以为电子电路提供能量。”该模块包括一个能量调节电路,它能从发电机的初级交流电能提供稳定的 3V 或 3.3V 直流。电流大小要看振动的强度,但一般普通机器可以产生 1mW ~ 3 mW 的电能。   Freeland 描述了一个 Perpetuum 的客户所设计的无线传感器系统。“该装置有一个温度传感器和一个湿度传感器,每秒钟传送两次数据。一般情况下,发射机需要约 30 mW 能量,但该装置的发送只几十毫秒,电路中的一只电容器平时在充电,用于驱动发送时则放电,发送对能耗的要求最大。”Perpetuum 的发电机价格为 30 美元(批量)。   Ferro Solutions公司 也在制造振动发电机。该公司最初的产品采用机电技术,但最近转用专利的压电技术,该技术可放大压电折弯(一条弹性的压电材料)磁致伸缩元件的信号,它会根据磁场而改变形状。价格约为 30 美元。 附文:太阳能计算器为低功耗设计提供指南   太阳能计算器已经面世 30 多年了,它们为依靠采集的能量而工作的超低功耗便携装置提供了出色的设计范例。Russ Rosenquist 是德州仪器公司计算器产品的高级设计师,他为有功耗限制的处理器系统设计提供了如下建议:   * 使用具有甚长指令字的处理器。“最关键的是要在每个时钟周期内做尽可能多的事。并行通道结合甚长指令字,可以在一个时钟周期内完成更多工作。”   * 使用低泄漏的工艺技术,这样每个时钟周期消耗的能量最小。   * “扩展处理器内的时钟门限。当一个指令没有用到芯片部分时,关掉这个局部的时钟信号,这样就可避免芯片那部分中的结点作不必要的触发。”   * 为数学计算密集的系统选择正确的架构。计算可以采用十六进制-十进制的纯二进制形式,或者采用 BCD(二进制编码的十进制)。BCD 在计算周期中的效率较高,因而能量效率也较高。   * 同时使用时钟周期的上升沿和下降沿。“今天的设计工具强调使用同步设计技术,即只使用时钟的上升沿。但在计算器设计中,如果你可以利用下降沿,就一定要用上它。”要致力于用最小的时钟周期数目完成计算工作。“一旦做到这点,就可以使处理器运行在较低频率上,仍能在容许的时间段内获得计算结果。” 参考文献   1. Roundy, Shad, Paul K Wright, and Jan Rabaey, "A study of low-level vibrations as a power source for wireless sensor networks," Computer Communication s, 2003, http://psdam.mit.edu/2_76/critique/Pool1/110-vibration%20power%20source1.pdf .   2. Webb, Warren, "Thinking inside the box: Buildings get a brain," EDN, July 21, 2005, pg 48.   3. Conner, Margery, "Run for your life: ultralow-power systems designed for the long haul," EDN, May 26, 2005, pg 46 . 更多信息请浏览 EnOcean www.enocean.com Ferro Solutions www.ferrosi.com Perpetuum www.perpetuum.co.uk Sanyo www.sanyo.com/industrial/solar Texas Instruments www.ti.com
  • 热度 22
    2010-6-3 13:39
    2694 次阅读|
    2 个评论
    噪声来源于振动,解决好了振动问题,噪声问题也会迎刃而解,所以本文表面是探讨振动和噪声两个问题,其实是同一个问题。 振动的两个基本指标是振幅和频率,解决振动问题,就围绕着这两个概念展开,要么降低振幅,要么调整振动频率点。 频率可分为固有频率Wn和激励频率W,固有频率源于产品的结构特征,由质量、质量分布、质心位置、刚度等多个因素和多个因素间的相互作用所确定。固有频率计算公式为(公式1)k是物体的刚度,m是物体的质量。激励源的频率点应避开固有频率Wn。当Wn=W的时候,就发生了谐振,谐振时候的振幅最大。 当频率比(公式2),即进入隔振区,使振动传递系数小于1,才有减振和隔振效果。在机械质量m已确定的情况下,降低其可降低固有频率。 若Wn,既增大衰减率,又远离“共振区”。例如,当阻尼比0.1,频率比为3.6时,就可衰减90%的振幅。 有了以上的理论基础,下面是几个基于上面理论的解决办法。 1从振动发生源上处理 从振动源上处理:既然是激励频率落进了1.414Wn的范围内,那就想办法使激励频率提高,常见办法有: 如果是步进电机,就对步数细分,通过细分改驱动脉冲的步进频率加倍使步与步之间的差距缩小; 如果有减速器、传送带、传送齿轮,就通过改变主动轮与从动轮的半径比值,改变传动比,这样被驱动的终端要想保持原来的速度,主动轮的转速势必要加快,转速和激励频率成正比例,激励频率提高,后面的震动感应固有频率未变,两个频率错开,震动自然减弱; 2从振动传递路径上处理 如果振动源是不可避免的,那就在传递路径上加隔振措施处理,从原理上看,刚性越强解决办法如下: 传动轴用弹性联轴器,这样避免了轴和轴不同心的转动下,力矩传递不受损失,且轴和轴不对心而带来的相互周期性刚性位移也可改观,这种周期性相对位移是震动和噪声的根源; 传动之间用皮带轮柔性连接,振动源与支撑件基座间加缓冲减震材料或装置; 弹簧悬挂振动源,对缓冲减震很有作用,但会有三个问题需要克服,一是启停时机器会抖动,二是不能传递力矩,因为弹簧本身是不能传递扭矩的,三是运输时要考虑固定,装机后还要拆去,比较麻烦; 设计导振措施,把振动导走,振动仍在,但离我们较远了。常见的是大发电机,在固定在地面的时候,在基座四周挖沟,孤零零的形成一个沟里的地桩,振动从地下传出去,到了楼房的时候,再通过楼房地基往上返,会把振动减弱好多。 3对振动感应系统的处理 振动源解决不了,传播路径解决不了,或者解决成本太高,可以在受震动点改进,虽然这个办法不是首选,具体的方法如下: 在满足强度要求的情况下,选用低刚度材料制作构件(特别是制作支承件)是一种减振的有效途径。Wn降低,远离了激励源频率W;对自行式机械,将刚性悬挂改为弹性悬挂;对固定设备,将弹性件、阻尼件和质量件构成串和并联、先串后并或先并后串等多种形式组合系统的弹性支承装置,都能按照我们的预定要求,使系统的等效刚度低于原有的刚度,从而达到减振的目的。 加重固定基座的质量,降低固有频率点; 注意单纯依靠降低刚度、降低固有频率来提高减振性能有时并不可取。一是随着刚度的降低,系统设备的静态位移也会增加,会使空间布置、弹性尺寸、结构设计带来困难。二是对于不同工作要求的设备,通常有一个最低刚度的限制值,尤其是有力矩传递、力传递的时候,单纯降低刚度也不是办法。 另外可以实施结构的合理布局,分析预计到产品使用中将处于既有竖向振动,又有俯仰角振动等耦合振型时,注意结构的合理性,质量对称分布的可能性,并确定出振幅为零点结构上的“节点”,以便对振动敏感的机械仪表、仪器或驾乘操作者坐椅能设置在“节点”或其附近。 4共鸣空腔的处理 有时候会遇到一种情况,把机器装起来,噪声很大,但振动幅度也不是很大,把机器拆开,噪声明显减小,这个现象是共鸣,共鸣的产生是类似音箱效果的共振,处理的办法是把空腔破坏掉,空腔内的传播介质是空气,在空腔中波动,空气波激励机壳产生轻微振动,尤其是对开模具的注塑壳,壳内有电机等传动装置时,容易产生这种现象。 针对其产生机理,实施反向工程设计,破坏其空腔和空气震动传播的路径,破坏壳体薄壁的震动,解决的办法是在机箱中加空气隔板或海绵,挡住空气的震动传播;另外是在壳体上加筋,使壳体的刚性增强,这样即使有震动空气传到壁上,也不会产生壳体的微小变形产生震动进而成为共鸣。 5注意的问题 通过调整频率点的方式实现减震时,机器启停的过程会出现瞬间加速或减速,这样激励频率会经过固有频率点,例如步进电机支撑机构固有频率10Hz,步进电机的频率100Hz,正常工作状态下,100Hz的激励频率肯定不会引起共振,但启动时,得经历0Hz—10Hz—100Hz这样的过程,停机时得经历100Hz—10Hz—0Hz的过程,所以会出现启停过程的震动,如果机器设计要求较高,不能不考虑这个影响。 振动规律表明,具有多种振动,多种振型,并且总是以最低的固有频率所对应的振型为主。在既有竖向振动又有俯仰振动的耦合振型时,为避免产生剧烈的俯仰振动(因人和设备对俯仰振动耐受力更低,破坏性更大),在激励频率W、俯仰角振动固有频率Wn1.和竖向振动固有频率Wn2之间,使WWn1Wn2成立,实践证明有利于系统动态特性。 设备的弹性支承能实现震动隔离,但布置不当,则易引起耦合振动。当弹性支承对称布置于设备的四个角处,当质心处于受到竖向干扰力作用时,设备只作竖向方向振动,并不会引进其他型式的振动,当干扰力大小位置不变,弹性支承各顶点与质心几乎在同一平面,但是由四个弹性支承沿纵向布置不对称时,设备会伴随竖向作上、下振动的同时,还作沿质心横轴的俯仰振动。这种多个方向同时发生的振动称为耦合振动。如果在沿横轴方向的支承布置也不对称,那么就会引起共振型同时出现的耦合振动。多一种振型,就多一个固有频率,也就多了一次引起共振的机会。这对设备的正常运转不利,也使弹性支承装置的设计和使用带来很多的困难。 激励频率的产生一是来自自身,一是来自外界。自身的激励频率在多数工况下,要么是工作任务要求所确定的(如在某一确定的转速下工作),要么是随机的无法控制的(如自行式设备由地面不平引起的激振)。由于旋转的不平衡会使旋转机械形成故障,例如风机转子,烟气粉尘粘在叶片上引起风机的不平衡运转,在工艺上过滤粉尘、烘干等措施都可以削减振动。 以上是震动和噪声的常见问题和解决思路,再有高深的我也搞不懂了,就得找振动测试仪实地测一下,确认频率和振幅,顺藤摸瓜,逐步往外延伸测量,跟踪到振动源,然后再分析找到在哪个环节解决问题的简便而经济的办法。
相关资源