热度 15
2012-4-25 16:27
1355 次阅读|
0 个评论
来源:机电在线 http://www.hampoo.com/know-how/detail/226 实际上印刷线路板(PCB)是由电气线性材料构成的,也即其阻抗应是恒定的。那么,PCB为什么会将非线性引入信号内呢?答案在于:相对于电流流过的地方来说,PCB布局是“空间非线性的。 放大器是从这个电源还是从另外一个电源获取电流,取决于加负载上的信号瞬间极性。电流从电源流出,经过旁路电容,通过放大器进入负载。然后,电流从负载接地端(或PCB输出连接器的屏蔽)回到地平面,经过旁路电容,回到最初提供该电流的电源。 电流流过阻抗最小路径的概念是不正确的。电流在全部不同阻抗路径的多少与其电导率成比例。在一个地平面,常常有不止一个大比例地电流流经的低阻抗路径:一个路径直接连至旁路电容;另一个在达到旁路电容前,对输入电阻形成激励。图1示意了这两个路径。地回流电流才是真正引发问题的原因。 当旁路电容放在PCB的不同位置时,地电流通过不同路径流至各自的旁路电容,即“空间非线性所代表的含义。若地电流某一极性的分量的很大部分流过输入电路的地,则只扰动信号的这一极性的分量电压。而若地电流的另一极性并没施扰,则输入信号电压以一种非线性方式发生变化。当一个极性分量发生改变而另一个极性没改动时,就会产生失真,并表现为输出信号的二次谐波失真。图2以夸张的形式显示这种失真效果。 当只有正弦波的一个极性分量受到扰动时,产生的波形就不再是正弦波。用一个100Ω负载模拟理想放大器,使负载电流通过一个1Ω电阻,仅在信号的一个极性上耦合输入地电压,则得到图3所示的结果。傅立叶变换显示,失真波形几乎全是-68dBc处的二次谐波。当频率很高时,很容易在PCB上生成这种程度的耦合,它无需借助太多PCB特殊的非线性效应,就可毁掉放大器优异的防失真特性。当单个运算放大器的输出由于地电流路径而失真时,通过重新安排旁路回路可调节地电流流动,并保持与输入器件的距离,如图4所示。 多放大器芯片 多放大器芯片(两个、三个或者四个放大器)的问题更加复杂,因为它无法使旁路电容的地连接远离全部输入端。对四放大器来说更是如此。四放大器芯片的每一边都有输入端,所以没有空间放置可减轻对输入通道扰动的旁路电路。 图5给出了四放大器布局的简单方法。大多器件直接连至四放大器管脚。一个电源的地电流可扰动另一个通道电源的输入地电压和地电流,从而导致失真。例如,四放大器通道1上的(Vs)旁路电容可直接放在临近其输入的地方;而(-Vs)旁路电容可放在封装的另一侧。(Vs)地电流可扰动通道1,而(-Vs)地电流则可能不会。 查看详情:http://www.hampoo.com/know-how/detail/226