tag 标签: 模组

相关博文
  • 2024-9-25 11:18
    0 个评论
    物联网系统中为什么要使用LAKI模组: 物联网系统中使用LAKI模组的原因可以归结为以下几个方面: 技术先进性 广覆盖能力:LAKI模组具有卓越的广覆盖能力, 其射频SoC芯片接收灵敏度小于-120dBm@125kbps,系统通讯距离可达5千米以上 。这使得LAKI模组在物联网应用中能够轻松覆盖大面积区域,降低网络部署成本。 低功耗特性:LAKI模组配合LAKI无线通讯协议,在超低功耗方面表现出色。例如,在一秒心跳频率(即每秒醒来监听一次),每天发送30次数据(单次数据量从数十到数百字节)的情况下,平均功耗不超过27mAh,即一颗纽扣电池(如CR2450)可供LAKI模组工作十年以上。这种低功耗特性降低了物联网设备的运维成本,减少了频繁更换电池的需求。 低时延性能:LAKI模组在保证广覆盖与超低功耗的前提下,依然能够实现较低的通信延迟。监听周期可设定为从数毫秒到1000秒,且芯片在休眠时有8kbytes retention SRAM,可实时被动唤醒。这对于依赖快速响应和实时数据交换的物联网应用至关重要,如工业自动化、远程医疗、智能交通系统等。 高效的数据处理和网络能力 高数据速率:LAKI模组的带宽最高达1Mbps,能够满足绝大部分物联网低功耗、低成本连接的需求。这一特性使得LAKI模组在传输大量数据时具有更高的效率和稳定性。 大数据容量:LAKI模组具有较大的网络容量,单信道可处理2000终端。这意味着在高密度终端大规模部署和对响应速度要求比较高的物联网应用中,LAKI模组能够保持高效的通信性能。 经济性和灵活性 低成本部署:由于LAKI模组的广覆盖能力,建网时只需要少量网关就可以覆盖大片区域,网络建设简单、快速且成本低。此外,LAKI网关也采用LAKI自研的射频SoC芯片,进一步降低了网关成本。 灵活的组网方式:LAKI模组支持多种网络拓扑,包括星型网络拓扑、网状网以及中继组网方式。这使得LAKI模组能够更好地适应各种复杂的物联网应用场景。 高安全性和稳定性 安全性保障:LAKI模组集成了AES 128加密引擎,且数据传输通过密文传输,提供了较高的数据安全保障。这对于涉及敏感信息的物联网应用尤为重要。 稳定性保障:LAKI模组经过严格的测试和验证,具有稳定的通信性能和较高的可靠性。这保证了物联网系统的稳定运行和数据的准确传输。 综上所述,物联网系统中使用LAKI模组的原因在于其技术先进性、高效的数据处理和网络能力、经济性和灵活性以及高安全性和稳定性。这些优势使得LAKI模组成为物联网系统中不可或缺的重要组成部分。 LaKi技术作为一个已经在智慧零售、仓储物流、铁路、畜牧业、农业灌溉、人员管理、资产管理、工业互联网、语音对讲等领域实现卓越的应用性能。下文将通过两个解决方案更好地阐述LaKi技术的应用优势。 应用示例 站式标签应用系统解决方案 在物联网技术不断推进的今天,标签技术作为连接实体世界与数字信息的桥梁,其重要性日益凸显。 标签的种类繁多, 常见的有条形码、二维码、无源RFID、有源RFID以及各种功能标签(如测温标签、压力标签、计步标签、位移标签、气体监测标签、墨水屏标签等)。他们都有各自的应用优势和劣势,例如,条形码、二维码成本低廉, 但只能逐个扫描,效率比较低;无源RFID成本高一点, 能够在数米或十数米的范围内快速读取,效率高一点,成版本也高一点;有源RFID的技术选择很多, 可以在数十米的范围内读取数据,受限于功耗,但由于一般采用标签主动发射信息给网关(也可以叫读卡器)这种工作方式,器件精度和信号碰撞使其对同一区域的终端数量有些限制,所以,一般一个区域只能部署200~300个有源RFID。功能标签也是名目繁多,但采用的无线技术要么通讯距离短,要么功耗比较高, 成本非常高,所以只有少量的功能性标签。传统的标签硬件系统一般是分离的, 很难共用同一种基础网络技术。现阶段多标签系统的硬件架构一般如下图所示,标签层和读写层都有太多的选择,现有的技术有其不同的优劣势,异构、分离的标签系统的简单组合大幅增加了客户网络成本、部署成本、使用成本和维护成本, 从而严重影响了企业或社会利用各种标签技术实现智改数转的进程。 LaKi一站式标签融合应用硬件平台以其独特的技术优势,正在重塑标签领域的应用前景,为企业提供了一种全新的、高效的解决方案。LaKi的工作功耗低、通讯距离远、网络吞吐率高, 非常适合大规模一站式标签系统的底层技术。 如上图所示, 只需要在标签应用区域部署一个网关,就可以覆盖半径500米以上的一大片区域,单信道网络处理能力超过1000pps。采用LaKi技术的有源RFID、功能性标签可以自由地部署,合适的设计可以让标签生命周期内无需更换电池,亦即无需维护。二维码、条形码等异构标签可以通过内置的LaKi模块的读卡器或数据采集器进行应用, 无需改变操作人员的操作方式和习惯。总结起来,LaKi一站式标签应用系统具备很多优势,例如 标签自由选择权还给客户 :由于LaKi是目前唯一能够同时实现三大关键特性的无线技术, 因此,采用LaKi技术的有源RFID、功能标签等都有机会做到最佳性价比;如果客户已经采用了条形码、二维码或无源RFID中的一种到几种, 都可以通过LaKi读卡器或采集器统一接入到LaKi网络,从而实现一网通用,保护用户的原有标签投资。 网络部署方便快捷成本低 : 一个网关即可覆盖一大片区域 (工厂园区单网关覆盖80万平方米以上,空旷地区600万平米以上),建网非常快速、方便,就像部署家用WiFi路由器一样简单,用户可以轻松自助部署,而硬件成本只需要千元左右。 终端成本低廉部署傻瓜化 :LaKi技术的工作功耗低、通讯距离长、网络处理能力强,使得很多终端可以以钮扣电池等低容量电池为电源续航终身,终端体积也因此降低,从而可以让用户自主安装,到期(电量耗尽)直接更换,避免了成本高昂的部署成本、使用成本和维护成本。 解决信号碰撞实现高密度部署 :LaKi技术的带宽比较高,如果LaKi有源RFID采用和传统有源RFID的终端主动周期性报名的工作模式,其部署密度可以是传统有源RFID数倍;但LaKi由于发射和接收功耗都很低,可以采用点名、群呼等方式实现有序报名,从技术层面解决信号碰撞的问题。这样,采用LaKi技术的有源RFID、功能标签或LaKi读卡器可以突破传统有源RFID等终端设备的密度限制,实现高密度部署。 低功耗双向通信保证高可靠性 :传统的有源RFID一般是单向通讯,如果要双向通信的话功耗就比较高, LaKi可以低功耗双向通讯,可以让用户实现快速按需盘点,这是单向通讯无法做到的。 基于全球免费频段可全球畅用 :LaKi技术PHY层射频SoC基于2.4GHz的全球免费ISM频段, 因此可以在全球范围内应用,无需担心不同国家和地区的频谱政策限制。 无网络语音对讲解决方案 在追求高效沟通与无缝连接的今天,LaKi超低功耗实时广域网技术以其卓越的性能指标与创新应用,正重塑无网络语音对讲领域的行业标准。凭借前所未有的空口速率、极低的发射功率需求以及出色的通信距离,LaKi不仅提供了卓越的语音对讲能力,更实现了多方实时通话的突破,开启了节能、高效且用途广泛的无线通信新时代。 超凡性能,打破传统界限 LaKi技术的核心亮点在于其惊人的空口速率高达1Mbps,这一速率不仅确保了语音数据的高速传输,还为未来的功能升级和多元应用场景预留了充足空间。尤其值得一提的是,仅需微弱的5dBm发射功率,LaKi即可实现超过1.5公里的有效通信距离,远超同类技术标准。这意味着在保持超低能耗的同时,LaKi设备能在更大范围内可靠地进行语音对讲,大大拓宽了用户活动范围,尤其适用于户外探险、大型活动管理、应急响应等需要广阔覆盖的场景。 实测验证,超越期待表现 实际测试进一步验证了LaKi技术的强大实力。在仅采用100mW发射功率与2dBi天线配置下,LaKi系统成功实现了长达3.5公里以上的清晰语音通信,这与市面上普遍采用2W发射功率的传统对讲机所达到的距离旗鼓相当。这一卓越表现不仅彰显了LaKi技术的能效比优势,更证实其在降低设备体积、减轻重量、延长电池寿命等方面具有无可比拟的潜力,为用户带来轻便、持久且高性能的对讲体验。 大带宽,开启多方对话新纪元 LaKi技术的大带宽特性赋予了系统充足的资源余量,使其能够轻松应对复杂、多变的通信需求。目前,LaKi已成功实现八方同时通话,彻底颠覆了传统一对一或小规模组群对讲的局限。无论是大规模团队协作、紧急调度指挥,还是跨地域的多方会议交流,LaKi都能确保每位参与者的声音清晰、流畅地传递,实现真正意义上的实时多方通话,极大地提升了沟通效率与协同效果。 LaKi超低功耗实时广域网技术以其独特的技术优势,正在改写无网络语音对讲的规则手册。凭借超高的空口速率、极低的发射功率需求、超远通信距离以及开创性的多方实时通话功能,LaKi为各行各业提供了前所未有的高效、节能、长距离的无线通信解决方案。无论是专业领域还是日常生活中,LaKi都展现出强大的适应力和革新力,无疑是引领未来语音对讲技术发展、塑造通信新标杆的杰出代表。 本文会再为大家详解无线通信模组家族中的一员——LAKI模组。 LAKI模组的定义 LaKi技术由千米电子历经多年研发而成,专注于物联网最后一千米的大规模、低成本海量覆盖。该技术包含了协议层(MAC)LaKiplus和物理层(PHY)射频SoC芯片,是目前唯一能够同时实现广覆盖、低功耗和低时延的无线技术。基于LaKi射频SoC为主而设计的模组,称之为LAKI模组. LAKI通信原理 LaKi采用CSMA/CA协议,信道利用率可以达到100%,与LoRa等采用Aloha网络模型的技术相比,利用率高得多, Aloha模型的信道利用率最高只有18%。 CSMA/CA和Aloha网络模型的具体原理见下图: 这也是为何LoRa的并发用户数量比较低的原因所在。 某用户实测数据为2000个点的LoRa网络,需要37分钟才可以盘点完毕。 就是因为信道利用率低导致严重的网络拥塞,这不光大大降低了响应速度,也会造成终端耗电的急剧上升, 上述网络的终端用20000mAh的电池供电, 两个多月就要充一次电。 LAKI模组的优势 广覆盖:LaKi射频SoC芯片接收灵敏度小于-120dBm@125kbps,系统通讯距离可达5千米以上。在发射电流仅5.9mA(5dBm功率)的条件下,LaKi能实现超过1.5公里的有效通信距离。 低时延:监听周期可设定为从数毫秒到1000秒,LaKi芯片在休眠时有8kbytes retention SRAM,可实时被动唤醒。 低功耗:最大接收电流7.5mA,发射电流4.5mA@0dBm,8mA@4dBm;在通讯距离1公里以上、1秒监听周期的情况下,平均电流小于3微安。 LaKi在这些关键指标上都处于领先地位,重新定义了物联网通信标准。相较于传统的LoRa、蓝牙(BLE)、NB-IoT以及ZigBee技术,LaKi在地理覆盖范围、设备续航能力以及实时数据处理等方面均展现出压倒性的优势,为物联网应用的部署和扩展提供了更为经济、高效、灵活的选择。无论是对于远程环境监测、大规模资产跟踪、智慧城市的基础设施管理,还是对于需要实时交互和长距离通信的各类创新应用,LaKi都以其技术革新性推动着物联网行业向更广阔、更深入、更实时的维度发展,开启了物联网应用的新纪元。 LPWAN的三种主流技术NB-IoT、LoRa和Sigfox节电的机制类似, 都是通过大量的睡眠和少量的工作时间规划来实现低功耗,而在终端睡眠时,网关是无法和终端进行任何通信的;NB-IoT和LoRa相比于Sigfox,带宽增加了,而前两者还能够支持低时延通信,后者却不能, 例如LoRa的Class C模式,NB-IoT的DRX模式,但在这样的通讯模式下,终端的功耗非常高,需要接电源或者使用大容量电池。因此,LoRa和NB-IoT是无法同时实现低时延通讯和低功耗的, 决定了他们只能根据实际应用进行取舍。可实际应用中,物联网特别是智慧物联网的多数应用是需要低时延的,也即双向实时/准实时通讯,因此,NB-IoT和LoRa只能在少数对实时性没有要求、数据量少且发送频次低的应用场景里能够有较低的总体成本。可见,虽然他们的建网成本比较低,但由于只适应少量的应用场景,导致网络能够承载的业务少,从而网络的价值并不高。这也是国内自2016年开始大力推广NB-IoT以来,人们预期的爆发却并没有到来的根本原因。 LaKi设计之初就是要同时实现广覆盖(关键特性1)、低时延(关键特性2)和低功耗(关键特性3)的,这在很多业内人士眼里看起来像是不可能的任务,但LaKi无线通讯协议从MAC层的角度同时实现了这三个特性,而LaKi射频SoC芯片则从PHY层的角度则使这个目标变成了现实。 LAKI通信与组网方式 主要采用星型网络(star network)部署,根据应用现场需要支持mesh-like和中继方式部署。后两者增强了LaKi的覆盖能力。 除了星型组网方式外, 可提供其他组网方式,如mesh-like,与星型组网方式比较,这种组网方式可以提高网络的可靠性(规避单点故障),大大提升了覆盖范围。 LAKI模组的功耗 按照NB-IoT自身的宣传来看, 5WH的电池, 每天定期醒来一次(即最省电的PSM模式,注意:并不是双向实时通信,是单向通信!), 发送200Byte的数据,可以用12.8年。 我们可以反向推出其一天的功耗: 电池如果电压是3.7V的话, 5WH的电池电量为: 5(WH)/3.7V ≈ 1350mAH 每天的功耗:1350mAH/(12.8×365)≈0.2890mAH 这说明即使NB-IoT终端即使在无法实时响应且一天只传送一次数据的PSM模式下, 其功耗也是一天传送30次数据且能够实时响应的LaKi终端的5倍! NB-IoT的PSM模式是无法做双向实时通信的,即使在每天200Bytes这样小的数据量的情况下,其功耗也是LaKi的五倍左右,表明NB-IoT的睡眠功耗非常高。根据华为的数据,DRX模式一天使用24mAh的电量, eDRX模式一天使用1.5mAh的电量,具体监听间隔没有看到说明,但只有DRX模式可以做到接近一秒(1.28秒)的准实时响应,按照华为的宣传特点,此实际功耗应该比其宣称的24mAh的要大,但即使是按照24mAh的耗电量来看,两颗CR2450电池(理想电量1500mAh)理想使用时间也就是60天, 而可以对比的是,同样的电量,LaKi在实时双向通信模式下的理想使用时间可为72年!如果终端数量增多,还会进一步加剧功耗,根据实际的使用情况, 20000mAh的可充电电池,在200个NB-IoT终端的情况下,只能用6个月。 LoRa的情况比NB-IoT要好些,但由于其采用的Aloha网络模型等原因,信道利用率不好,实际使用中,20000mAh的电池在200个终端的情况下,可以大约使用15个月, 2000终端时大概使用3个月。 这是因为终端的增多会增加网络碰撞的几率,使终端发射时间增加,从而更加耗电。 供应商A:LaKi 常州千米电子科技 1、产品能力 (1)主推型号1:KMS2400AR Tag V1.0 产品详情介绍 TagV1.0是用LK2400SA射频SoC为主而设计的模组,其大小只有一个一元硬币大小,可以直接用来做有源RFID或者物联网连接模块。 当用TagV1.0来做有源RFID时, 在保持Tag能够实时响应且通讯距离达一公里以上时,一颗CR2432纽扣电池可以续航5年以上(理论值超10年),且盘点迅速,单信道每秒可以盘点2000以上的终端。用于物联网连接时, 在监听周期一秒(即一秒响应)、每天传输数十次数百字节信息时,平均电流小于8微安 ,年耗电量30-60mAh。 硬件参考设计 2、支撑 (1)技术产品 技术资料 9_LK2400A-API_UserManual-v4.6(40pin).pdf (如有侵权,联系删除) 本文章源自奇迹物联开源的物联网应用知识库Cellular IoT Wiki,更多技术干货欢迎关注收藏Wiki: Cellular IoT Wiki 知识库 (https://rckrv97mzx.feishu.cn/wiki/wikcnBvAC9WOkEYG5CLqGwm6PHf) 欢迎同学们走进AmazIOT知识库的世界! 这里是为物联网人构建的技术应用百科,以便帮助你更快更简单的开发物联网产品。 Cellular IoT Wiki初心: 在我们长期投身于蜂窝物联网 ODM/OEM 解决方案的实践过程中,一直被物联网技术碎片化与产业资源碎片化的问题所困扰。从产品定义、芯片选型,到软硬件研发和测试,物联网技术的碎片化以及产业资源的碎片化,始终对团队的产品开发交付质量和效率形成制约。为了减少因物联网碎片化而带来的重复开发工作,我们着手对物联网开发中高频应用的技术知识进行沉淀管理,并基于 Bloom OS 搭建了不同平台的 RTOS 应用生态。后来我们发现,很多物联网产品开发团队都面临着相似的困扰,于是,我们决定向全体物联网行业开发者开放奇迹物联内部沉淀的应用技术知识库 Wiki,期望能为更多物联网产品开发者减轻一些重复造轮子的负担。 Cellular IoT Wiki沉淀的技术内容方向如下: 奇迹物联的业务服务范围:基于自研的NB-IoT、Cat1、Cat4等物联网模组,为客户物联网ODM/OEM解决方案服务。我们的研发技术中心在石家庄,PCBA生产基地分布在深圳、石家庄、北京三个工厂,满足不同区域&不同量产规模&不同产品开发阶段的生产制造任务。跟传统PCBA工厂最大的区别是我们只服务物联网行业客户。 连接我们 , 和10000+物联网开发者一起 降低技术和成本门槛 让蜂窝物联网应用更简单~~ 哈哈你终于滑到 最重要 的模块了, 千万不!要!划!走!忍住冲动!~ 欢迎加入飞书“开源技术交流群”,随时找到我们哦~ 点击链接 如何加入奇迹物联技术话题群 可以获取加入技术话题群攻略 Hey 物联网从业者, 你是否有了解过奇迹物联的官方公众号“ eSIM物联工场 ”呢? 这里是 奇 迹物联的物联网应用技术开源wiki 主阵地,欢迎关注公众号,不迷路~ 及时获得 最新物联网应用技术沉淀发布
  • 2024-9-25 10:51
    0 个评论
    物联网系统中为什么要使用燃气模组 燃气供给控制 精准控制:燃气模组通过控制燃气阀门的开关,实现对燃气供给的精准控制。用户可以通过旋钮或按钮等简单操作来控制燃气的流通,从而方便调节燃气的使用量,满足不同的使用需求。 自动化管理:在物联网系统中,燃气模组可以与智能控制系统相连接,实现燃气供给的自动化管理。这不仅可以提高燃气使用的便捷性,还可以减少人工操作的错误和疏漏。 燃气泄漏监测 实时监测:燃气模组内置传感器可以实时监测燃气管道中的气体浓度,一旦检测到燃气泄漏,会立即发出警报或切断燃气供给。这种实时监测的功能可以及时发现并处理燃气泄漏问题,防止事态的进一步恶化。 提高安全性:燃气泄漏是引发火灾、爆炸等安全事故的主要原因之一。燃气模组通过实时监测和及时报警,可以大大降低燃气泄漏引发安全事故的风险,保障用户的生命财产安全。 提高燃气使用安全性和管理效率 智能化管理:物联网系统中的燃气模组可以实现燃气使用情况的实时上传和分析,帮助燃气供应单位和管理部门实时掌握燃气使用情况。这种智能化管理方式可以提高管理效率,降低管理成本。 预防安全隐患:通过燃气模组的实时监测和数据分析功能,可以及时发现并预防潜在的燃气安全隐患。例如,对于独居、空巢老人等需要重点关注的居民,燃气公司可以与社区委进行协作,通过燃气模组实时监测其燃气使用情况,一旦发现异常立即采取措施进行处理。 促进节能减排:燃气模组还可以与智能控制系统相结合,实现按需供气、节能降耗等功能。这不仅可以降低用户的燃气使用成本,还有助于促进节能减排和可持续发展。 具体应用场景 1、智能燃气表 智能燃气表通过内置的燃气模组(如NB-IoT模组、Cat.1模组等)实现数据的智能采集、远程抄表、远程阀控、远程充值缴费以及故障检测等功能。这些模组能够确保数据的实时、准确传输,提高燃气企业的管理效率和用户的使用便捷性。例如,美格智能等公司在智能燃气表领域推出了多款适用于不同场景的模组产品,这些模组具有覆盖广、连接多、速率低、成本低、功耗低等特点,能够满足燃气行业数字化、信息化转型的需求。 2、燃气报警器 燃气报警器结合燃气模组和透传云平台,可以对燃气泄漏等险情进行预警数据的联网传输。当燃气检测仪检测到可燃气体浓度达到阈值时,会自动发出声音或灯光闪烁提示险情,并通过燃气模组将预警信息上传至云端平台。云端平台随后会以短信、微信、电话等多种形式通知有关各方,实现快速响应和救援。这种应用不仅提高了燃气使用的安全性,还减少了人工巡检的成本和不便。 3、智慧燃气表计终端 智慧燃气表计终端包括智能燃气表、温度压力监控设备等,它们通过内置的燃气模组实现与云端或数据中心的实时通信。这些模组能够执行初步的数据处理和分析任务,如异常检测、简单预测等,减少了数据传输至云端的需求,降低了延迟,提高了响应速度。同时,它们还能够根据预设模型进行智能判断和自适应调整,提升系统的智能化水平。例如,亚华物联等公司在智慧燃气表计终端领域推出了多款性能优异的燃气模组产品,这些模组已经在全国范围内实现大规模应用,并赢得了市场信赖。 4、智能家居 在智能家居领域,燃气模组也被广泛应用于智能燃气灶、智能热水器等设备中。这些设备通过内置的燃气模组实现与智能家居系统的互联互通,实现远程控制和智能化管理。用户可以通过手机APP等终端设备对家中的燃气设备进行远程监控和控制,提高生活的便捷性和安全性。 5、工业安全 在工业领域,燃气模组也被用于可燃气体浓度检测等场景。这些模组能够快速、准确地检测可燃气体浓度,并通过预警系统及时通知相关人员采取措施,防止事故的发生。这种应用对于保障工业生产的安全和稳定具有重要意义。 综上所述,物联网系统中使用燃气模组的原因主要包括精准控制燃气供给、实时监测燃气泄漏、提高燃气使用安全性和管理效率等方面。随着物联网技术的不断发展和普及,燃气模组在燃气行业中的应用前景将更加广阔。 本文会再为大家详解传感器家族中的一员——燃气模组。 燃气模组的定义 燃气模组,也称为燃气模块,是一种用于控制燃气供给和监测燃气安全的装置,广泛应用于家用燃气设备(如燃气灶、燃气热水器等)以及工业燃气设备中。以下是对燃气模组的详细解析: 燃气模组的主要功能 1、燃气供给控制: 燃气模组通过控制燃气阀门的开关,实现燃气的供给和切断。用户可以通过旋钮或按钮来控制燃气的流通,方便调节燃气的使用。 2、燃气泄漏监测: 燃气模组内置传感器可以实时监测燃气管道中是否有泄漏情况。一旦检测到燃气泄漏,会立即发出警报或切断燃气供给,确保使用者的安全。 3、燃气点火控制: 燃气模组通常还包括点火控制功能,可以通过电子点火或火柴点火的方式实现燃气的点火,提高使用的便利性和安全性。 燃气模组的工作原理 燃气模组的工作原理主要基于电路控制和传感器技术。它通常包括一个中央处理器(CPU),用于控制燃气阀门的开关,并接收和处理传感器的信号。传感器一般包括燃气检测传感器和温度传感器: 燃气检测传感器:用于检测燃气泄漏情况,当检测到燃气浓度超过安全阈值时,会触发警报或切断燃气供给。 温度传感器:用于监测燃气的温度变化,确保燃气在安全范围内燃烧。 当用户需要使用燃气时,通过控制开关操作燃气模组,中央处理器接收到指令后控制燃气阀门打开,燃气流入燃气设备进行燃烧。同时,燃气检测传感器会实时监测燃气管道中的气体浓度,如果检测到泄漏情况,中央处理器会发出警报并切断燃气供给。 燃气模组的分类 1、按传感器类型分类 电化学传感器模组: 电化学传感器是一种利用电化学反应原理来检测气体的传感器。 这类模组通常用于检测特定的可燃气体或有毒气体,如甲烷、一氧化碳等。 优点:高灵敏度、高选择性、响应速度快。 半导体传感器模组: 半导体传感器使用半导体材料制作,具有检测灵敏度高、响应速度快、稳定性好等特点。 常见的半导体燃气传感器如MQ系列(如MQ-4用于天然气检测,MQ-5用于液化气检测)。 这类模组广泛应用于家庭用气体泄漏报警器、工业用可燃气体报警器等。 光学传感器模组: 光学传感器利用光学原理检测气体,如红外甲烷传感器。 这类模组在检测精度、抗干扰能力和稳定性方面表现优异。 适用于工业现场仪器仪表、安全防护监控等领域。 催化燃烧式传感器模组: 催化燃烧式传感器通过测量可燃气体在催化剂表面燃烧时产生的热量变化来检测气体浓度。 这类模组具有响应速度快、重复性好、选择性好等优点。 常用于可燃性气体泄漏报警器、可燃性气体探测器等。 2、按应用场景分类 家用燃气模组: 如ZP04、ZP14等家用燃气模组,采用厚膜半导体传感器或催化燃烧式传感器。 具备家用燃气泄漏报警器的基本功能,如状态指示、蜂鸣器报警、继电器输出等。 适用于家庭厨房、浴室等场所的燃气安全监测。 工业燃气模组: 工业燃气模组通常用于工业生产过程中,实时检测原料气体、尾气、水汽等气体的浓度。 这类模组需要具有较高的稳定性和可靠性,以满足工业生产的安全和效率要求。 常见的工业燃气模组包括MC106、MC107等催化燃烧式气体传感器模组。 车载燃气模组: 车载燃气模组专门用于汽车等交通工具的燃气安全监测。 这类模组需要具备较高的抗震性和抗干扰能力,以适应车辆行驶过程中的复杂环境。 如ZP05车载燃气传感器模组,具有高灵敏度、宽电压输入、抗干扰能力强等特点。 环境监测燃气模组: 用于环境监测领域,通过气体传感器模组实时检测空气、水质、土壤等环境的气体浓度。 这类模组需要具有较高的灵敏度和准确性,以保障环境的质量和安全。 3、其他分类方式 除了以上两种分类方式外,燃气模组还可以根据其他因素进行分类,如检测气体的种类(甲烷、液化气、煤气等)、检测范围(低浓度、高浓度)、输出方式(模拟信号、数字信号)等。 燃气模组的选型参数 3.1、 通信方式 LORA:适用于需要长距离传输数据的场景,传输距离可达数公里。这种通信方式适合在广泛分布的燃气管道网络中使用。 GPRS:基于移动网络的通信方式,适用于需要实时数据传输且网络覆盖广泛的场景。 NB-IoT:低功耗广域网通信技术,适合用于对成本敏感且需要长期稳定运行的应用场景,如智能燃气表。 其他:如Zigbee、Wi-Fi等,根据具体需求选择。 3.2、 传感器类型 电化学传感器:适用于检测特定气体,如甲烷、一氧化碳等,具有高灵敏度和选择性。 半导体传感器:基于半导体材料制成,适用于检测多种可燃气体,具有成本低、响应速度快的特点。 催化燃烧式传感器:通过测量可燃气体在催化剂表面燃烧时产生的热量变化来检测气体浓度,适用于高浓度可燃气体检测。 3.3、 工作电压与电流 工作电压和电流是评估模组能耗和兼容性的重要指标。不同模组的工作电压和电流范围可能有所不同,需根据实际供电条件选择。 3.4、 检测范围与精度 检测范围指模组能够检测到的气体浓度范围。根据应用场景的不同,可能需要选择不同检测范围的模组。 精度则反映了模组测量结果的准确性。高精度模组适用于对测量结果要求较高的场景。 3.5、 环境适应性 包括工作温度、湿度、压力等环境因素对模组性能的影响。需根据实际应用场景选择具有良好环境适应性的模组。 3.6、 预期寿命与维护 预期寿命反映了模组的耐用性和可靠性。选择预期寿命较长的模组可以降低长期运营成本。 维护方面,需考虑模组是否易于安装、调试和维护。 3.7、 安全性与认证 安全性是选择燃气模组时必须考虑的重要因素。模组应具备防爆、防腐蚀等安全特性,并符合相关安全标准和认证要求。 3.8、 成本与性价比 成本是选型时不可忽视的因素之一。需综合考虑模组的性能、功能、价格以及后期维护成本等因素,选择性价比高的模组。 燃气模组的应用场景 燃气模组的技术应用与发展、未来趋势 随着科技的进步,燃气模组的技术也在不断发展。例如,超声波燃气表计量模组就是一种利用超声波技术进行燃气计量的先进设备。它利用超声波发射与接收模块发射超声波,当超声波遇到燃气表中的气体时会产生回波,通过信号处理与分析模块处理回波信号,可以计算出燃气的流量,从而实现高精度计量。 此外,智能燃气表也采用了无线通信解决方案,如低功耗蓝牙模块和NB-IOT/4G/Cat.1模块等,实现了数据的远程传输和实时监测。这些技术的应用不仅提高了燃气使用的安全性和便利性,还促进了燃气行业的智能化发展。 未来, 燃气模组将继续向智能化、高精度和节能环保的方向发展 。随着物联网技术的普及和应用,燃气模组将与其他智能化设备相结合,实现更加便捷和高效的服务。同时,随着技术的不断进步和成本的降低,超声波等高精度计量技术将在更多领域得到应用和推广。 燃气模组的厂商 国际知名厂商 费加罗(FIGARO) 简介:费加罗品牌创建于1968年,是全球知名的敏感报警产品生产商,主要产品包括气体传感器、可燃气体报警器、探测器、控制器等。在燃气传感器领域有着深厚的技术积累和市场份额。 霍尼韦尔(Honeywell) 简介:霍尼韦尔是一个高科技品牌,创始于1885年,业务范围广泛,包括物理世界和数字世界深度融合的产品。霍尼韦尔也生产气体检测仪器产品,其燃气传感器在市场上享有很高的声誉。 博世(Bosch Sensortec) 简介:博世(中国)投资有限公司提供微机电系统(MEMS)传感器的基础和解决方案,使移动设备能够感受和感知周围世界。虽然博世在燃气传感器领域的直接产品可能不如其他品牌突出,但其在传感器技术方面的实力不容小觑。 国内知名厂商 汉威 简介:汉威是来自河南省郑州市的品牌,成立于1998年,是国内知名的气体传感器和仪器制造商。产品包括传感器、智能终端、通信技术、地理信息等方面,在燃气传感器领域有着丰富的产品线和技术实力。 安可信 简介:安可信是来自四川省成都市的品牌,成立于1998年,是著名的气体探测和报警设备生产商。其研发的智能气体探测器、报警控制器等产品在市场上具有很高的质量和功能性。 驰骋电器 简介:驰骋电器是来自河南省郑州市的品牌,成立于2004年,专业从事高精尖仪器仪表的研发生产。旗下的气体检测仪器、安全环保分析仪器等产品深受用户信赖。 英吉森 简介:英吉森品牌来自于上海市,是一个专注于工业消防以及气体安全领域的高科技企业。业务范围覆盖工业消防系统、气体探测系统等,其燃气传感器产品在工业领域有着广泛的应用。 鑫豪斯 简介:鑫豪斯品牌创建于2003年,是来自四川省成都市的企业。专注于燃气消防仪器仪表等行业,是一个高新技术企业,也是国内比较早通过国家消防电子产品认可的品牌。 炜盛科技 简介:炜盛科技(郑州炜盛电子科技有限公司)是国内知名的气体传感器制造商,其MQ系列气体传感器在市场上有着广泛的应用。炜盛科技在燃气传感器领域也有着丰富的产品线和技术实力。 华润微 简介:华润微电子是领先的半导体和智能传感器供应商,拥有芯片设计、晶圆制造、封装测试等全产业链一体化经营能力。在MEMS传感器领域也有着较强的实力,部分产品可用于燃气检测。 歌尔股份 简介:歌尔股份旗下歌尔微电子是中国最大的MEMS传感器企业,也是全球最大的MEMS麦克风公司。虽然其主要产品为MEMS麦克风,但歌尔在传感器技术方面的积累也为其在燃气传感器领域的拓展提供了可能。 供应商A:炜盛 1、产品能力 主推型号1:ZC13家用燃气模组 对应的产品详情介绍 ZC13家用燃气模组 采用催化燃烧式传感器,具备数显家用燃气泄漏报警器的基本功能;提供UART 输出的数字信号和状态指示、蜂鸣器、继电器、电磁阀输出的开关量信号,并且支持报警值的重新设定。可用于家用数显燃气泄漏报警器的整机开发。 技术指标 无法复制加载中的内容 管脚定义 2、支撑 (1)技术产品 技术资料 f694e0370b1422a7c43284ea5a1a4ab49aba13f7.pdf (如有侵权,联系删除) 本文章源自奇迹物联开源的物联网应用知识库Cellular IoT Wiki,更多技术干货欢迎关注收藏Wiki: Cellular IoT Wiki 知识库 (https://rckrv97mzx.feishu.cn/wiki/wikcnBvAC9WOkEYG5CLqGwm6PHf) 欢迎同学们走进AmazIOT知识库的世界! 这里是为物联网人构建的技术应用百科,以便帮助你更快更简单的开发物联网产品。 Cellular IoT Wiki初心: 在我们长期投身于蜂窝物联网 ODM/OEM 解决方案的实践过程中,一直被物联网技术碎片化与产业资源碎片化的问题所困扰。从产品定义、芯片选型,到软硬件研发和测试,物联网技术的碎片化以及产业资源的碎片化,始终对团队的产品开发交付质量和效率形成制约。为了减少因物联网碎片化而带来的重复开发工作,我们着手对物联网开发中高频应用的技术知识进行沉淀管理,并基于 Bloom OS 搭建了不同平台的 RTOS 应用生态。后来我们发现,很多物联网产品开发团队都面临着相似的困扰,于是,我们决定向全体物联网行业开发者开放奇迹物联内部沉淀的应用技术知识库 Wiki,期望能为更多物联网产品开发者减轻一些重复造轮子的负担。 Cellular IoT Wiki沉淀的技术内容方向如下: 奇迹物联的业务服务范围:基于自研的NB-IoT、Cat1、Cat4等物联网模组,为客户物联网ODM/OEM解决方案服务。我们的研发技术中心在石家庄,PCBA生产基地分布在深圳、石家庄、北京三个工厂,满足不同区域&不同量产规模&不同产品开发阶段的生产制造任务。跟传统PCBA工厂最大的区别是我们只服务物联网行业客户。 连接我们 , 和10000+物联网开发者一起 降低技术和成本门槛 让蜂窝物联网应用更简单~~ 哈哈你终于滑到 最重要 的模块了, 千万不!要!划!走!忍住冲动!~ 欢迎加入飞书“开源技术交流群”,随时找到我们哦~ 点击链接 如何加入奇迹物联技术话题群 可以获取加入技术话题群攻略 Hey 物联网从业者, 你是否有了解过奇迹物联的官方公众号“ eSIM物联工场 ”呢? 这里是 奇迹物联的物联网应用技术开源wiki 主阵地,欢迎关注公众号,不迷路~ 及时获得 最新物联网应用技术沉淀发布
  • 2024-9-24 17:45
    97 次阅读|
    0 个评论
    物联网系统中为什么要使用ZETA LPWAN 模组 物联网系统中使用ZETA LPWAN模组的原因主要基于以下几个方面: 1、技术优势 低功耗广域网(LPWAN)特性:ZETA技术是一种基于UNB的低功耗广域网技术协议标准,具有覆盖范围广、服务成本低、能耗低等特点。这些特性使得ZETA LPWAN模组非常适合物联网环境下广域范围内数据交换频次低、连接成本低、适用复杂环境的连接需求。 高性能与扩展性:ZETA技术通过重新定义OSI参考模型中的物理层、数据链路层和网络层,实现了更高速率、更广覆盖和更好扩展性。与同类LPWAN技术相比,ZETA在通讯距离、穿透性和数据丢失率等方面表现出色,能够大幅降低应用落地成本。 2、安全性 高安全加密技术:ZETA LPWAN模组采用RSA非对称加密、AES加密算法、HMACMD5鉴权算法等技术,确保数据传输过程中的安全性和完整性。这些加密技术使得ZETA模组可应用于对安全自主要求较高的领域。 3、体积与功耗 小型化与低功耗:ZETA通讯模组体积小巧(如17.7 15.8 2.0mm),适用于对功耗和体积要求严苛的场景,如手表、手环、胸卡等可穿戴设备。同时,模组支持不同的功耗模式(如深度睡眠、普通睡眠、待机),进一步降低了能耗。 4、广泛应用场景 多领域应用:ZETA LPWAN模组广泛应用于车载运输、智慧能源、无线支付、智能安防、智慧城市、无线网关、智能工业、智慧生活、智慧农业等多个领域。其强大的覆盖能力和低功耗特性使得ZETA模组成为物联网系统中不可或缺的一部分。 5、国产化与自主可控 全栈国产化:ZETA LPWAN通讯模组从技术到生产均实现了全栈国产化,这有助于提升国内物联网技术的自主可控能力。同时,与多家全球企业的深度合作也进一步增强了ZETA技术的国际竞争力。 综上所述,物联网系统中使用ZETA LPWAN模组的原因主要包括其技术优势、安全性、体积与功耗优势、广泛应用场景以及国产化与自主可控等方面。这些优势使得ZETA模组成为物联网系统中实现高效、安全、低成本连接的重要选择。 本文会再为大家详解无线通信模块家族中的一员——ZETA LPWAN模组 ZETA定义 ZETA是由纵行科技自主研发的低功耗物联网通信技术,通过自研Advanced M-FSK(®)无线通信基带,使ZETA能做到传统LPWAN技术的1/6功耗、1/8频谱占用压缩,同时最高速率提升了6倍。ZETA是全球首个支持分布式组网、首个为嵌入式端智能提供算法升级的LPWAN通讯标准,其愿景是通过持续的技术创新,研发10美分成本、10公里覆盖、10mw功耗甚至无源的窄带通信芯片IP,实现更下沉的LPWAN 2.0泛在物联。 ZETA通信技术原理 1、物理层设计 超窄带通信: Zeta协议使用超窄带进行通信,单信道占用带宽仅3.8KHz,支持100/300/600bps的典型通信速率,最大速率可支持到50kbps。这种超窄带通信方式使得Zeta技术能够在保持低功耗的同时,实现远距离的数据传输。 Advanced M-FSK调制方式:Zeta技术采用Advanced M-FSK调制方式,该方式兼具Sigfox的窄带通信优势和LoRa的扩展性,可以在较小带宽中传输相对较高的速率。同时,Advanced M-FSK调制方式还具有很好的抗干扰特性,包括基于频谱扩展的信号干扰。 低功耗设计: Zeta协议通过多种低功耗设计来降低设备的能耗,如深度休眠、分时隙上行等。这些设计使得Zeta设备在不需要传输数据时能够进入低功耗休眠状态,从而延长电池寿命。 2、数据链路层设计 双向通信: Zeta协议支持上行和下行双向通信。上行通信主要用于传感器数据采集和上报,下行通信则用于配置、查询和控制等操作。这种双向通信能力使得Zeta技术能够应用于更复杂的物联网场景。 协议多样性: Zeta技术提供了多种协议以应对不同的应用场景需求,如ZETA-P(低时延)、ZETA-S(时频复用)、ZETA-G(协议精简)等。这些协议在数据传输速率、覆盖范围、功耗等方面各有侧重,以满足不同场景下的需求。 3、网络层设计 网络架构: Zeta网络架构为典型的星型拓扑,但为了面向多种物联网场景并降低落地成本和难度,Zeta网络还创新地实现了树状MESH架构。这种架构包含AP、智能路由、终端和管理平台等节点,通过智能路由的引入进一步扩展了覆盖范围并提高了网络灵活性。 设备鉴权与安全: Zeta协议通过入网鉴权、通信加密算法、鉴权及数据加密等方式确保网络协议及数据安全。设备接入时需要进行接入鉴权以避免非Zeta终端接入网络。同时采用轻量级加密算法Keeloq对报文数据域进行加密以保证数据传输的安全性。 4、工作原理 数据传输流程: 当Zeta设备产生数据时,会立即进行发送(在ZETA-P协议中)。数据通过无线信号传输到最近的AP或智能路由节点,然后经过多跳传输最终到达管理平台。管理平台可以对数据进行处理和分析,并通过下行通信向终端发送控制指令。 网络同步与维护: 为了维持网络的稳定性和可靠性,Zeta网络需要进行定期的网络同步和维护。例如,节点设备需要定期向管理平台发送心跳包以确认其在线状态;管理平台也会通过下行指令对节点设备进行配置和更新等操作 ZETA技术特性 1、成本: Zeta技术通过自研Advanced M-FSK无线通信基带,实现了传统LPWAN技术的低成本优势。据资料显示,Zeta技术的成本约为传统LPWAN技术的1/10,这使得它在物联网大规模部署时具有显著的经济性。 2、功耗: Zeta技术在功耗方面表现出色,仅为传统LPWAN技术的1/6。这种低功耗特性使得Zeta设备能够长时间运行而无需频繁更换电池,降低了维护成本。 3、频谱占用: Zeta技术的频谱占用压缩至传统LPWAN技术的1/8,这意味着在相同的频谱资源下,Zeta技术可以支持更多的设备连接,提高了频谱资源的利用率。 4、通信速率: Zeta技术在通信速率上有所提升,最高速率可达50kbps,相比传统LPWAN技术提升了6倍。这使得Zeta技术在需要较高数据传输速率的物联网应用中具有优势。 5、覆盖范围: Zeta技术支持多级智能路由,进一步扩展了覆盖范围。在协议安全方面,Zeta协议通过入网鉴权、通信加密算法等方式确保网络协议及数据安全。这使得Zeta技术在需要远距离通信和广泛覆盖的物联网场景中更具竞争力。 ZETA协议与标准 协议多样性:Zeta技术提供了多种协议模式(如ZETA-P、-S、-G、-H),以支持不同应用场景下的需求。这种灵活性使得Zeta技术能够更好地适应物联网市场的多样化需求。 完全国产自研:Zeta技术是完全由国内企业自主研发的,具有全国产知识产权认证及资质。这避免了关键技术被国外厂商卡脖子的风险,提高了供应链的可靠性和安全性。 ZETA优势 1、国产自主标准 全栈国产化:ZETA通信技术实现了模组、芯片、协议、终端及云平台的全栈国产化,避免了关键技术被人卡脖子的问题,供应链更安全可靠。这一优势在当前国际环境复杂多变的背景下显得尤为重要。 政策支持:由于ZETA是国产自主标准,因此在政策上可能获得更多的支持,有助于其在国内市场的推广和应用。 2、技术性能优越 分布式组网:ZETA技术支持分布式组网,网络覆盖效果更好、布网更灵活、网络成本更低。这种组网方式使得ZETA能够更好地适应各种复杂的网络环境,提高网络的可靠性和稳定性。 超窄带技术:ZETA采用超窄带技术,通讯抗干扰性更强,频谱资源占用更节约。这有助于在有限的频谱资源下实现更高效的通信,降低通信成本。 高接收灵敏度:ZETA的接收灵敏度最高可达-149.2dBm,这一指标优于其他LPWAN技术,使得ZETA在远距离通信中具有更好的表现。 3、经济节能 低功耗:ZETA技术具有低功耗的特点,使得物联网设备在休眠模式下的耗电非常少,有助于延长设备的电池寿命。根据相关数据,使用ZETA技术的物联网设备的电池寿命预计为5到10年。 低成本:ZETA技术通过优化通信协议和硬件设计,降低了通信成本和设备成本。同时,由于其低功耗特性,也降低了设备的维护成本和能源消耗成本。 4、应用场景广泛 多协议支持:ZETA支持多种协议模式(如ZETA-P/S/G/H),能够根据不同的应用场景进行灵活配置和定制。这种灵活性使得ZETA能够适用于更多行业、更多应用场景。 快速部署:ZETA技术在传统LPWAN的穿透性能基础上,进一步通过分布式接入机制实现快速部署。这种快速部署能力有助于缩短项目周期,提高项目效率。 5、安全性高 强安全特性:ZETA通信技术具有强安全特性,能够保障数据传输的安全性和可靠性。这对于需要高安全性的应用场景(如金融、医疗等)尤为重要。 ZETA劣势 1、技术成熟度与标准化 技术成熟度: 相对于一些已经广泛应用多年的LPWAN技术(如LoRa、NB-IoT等),Zeta技术可能还处于相对较为新兴的阶段。因此,其技术成熟度可能相对较低,需要更多的实际应用和验证来不断完善。 标准化程度: 尽管Zeta技术已经拥有全国产知识产权认证及资质,但在国际标准化方面可能还有待进一步推进。标准化程度的高低直接影响到技术的互操作性和市场接受度。 2、网络覆盖与部署 网络覆盖: 虽然Zeta技术支持多级智能路由以扩展覆盖范围,但在一些极端或特殊环境下(如深山、地下室等),其网络覆盖能力可能仍然受限。 3、部署成本: 虽然Zeta技术本身具有低成本优势,但在实际部署过程中,可能还需要考虑网关、智能路由等基础设施的建设和维护成本。这些成本可能会因具体应用场景的不同而有所差异。 4、性能与限制 通信速率: 尽管Zeta技术在通信速率上有所提升,但与一些高速率的无线通信技术相比(如5G、Wi-Fi等),其通信速率仍然相对较低。这可能会限制其在需要高速数据传输的应用场景中的使用。 数据延迟: 由于Zeta技术采用低功耗设计,其数据传输可能会存在一定的延迟。这种延迟对于某些对实时性要求较高的应用场景(如远程控制、实时监控等)可能会带来一定的影响。 设备兼容性: 由于Zeta技术是自研技术,其设备兼容性可能相对有限。这意味着在与其他厂商的设备或系统进行集成时,可能需要更多的适配和调试工作。 5、安全性与隐私 安全性: 尽管Zeta技术采用了多种安全措施来确保数据传输的安全性,但在面对复杂多变的网络攻击时,其安全性仍然需要不断加强和完善。 隐私保护: 在物联网应用中,隐私保护是一个重要的问题。Zeta技术需要更加关注用户数据的隐私保护,避免数据泄露和滥用。 ZETA各通信参数指标关系 不过,对于某些领域的应用,距离、速率、功耗等这些要求都会有所不同,很难通过一种特定的技术来满足所有应用的要求,例如:在无线通信领域,想要降低数据传输的时延,往往需要提高传输的数据速率,但是数据速率也并非越高越好,速率越高信号就越容易产生衰减,导致传输距离就会变短。 相反,如果想要更广的信号覆盖,就需要降低信号传输的速率或者提高信号发射的功率,但是功率的提高又会带来功耗的增加。还有,很重要的一点就是频谱资源,频谱资源是有限的,非常珍贵,通常由国家严格管理。传输速率的提高往往也会消耗更多的频谱资源,想要传输更多的上行数据,就需要牺牲一点下行资源,相反亦然。所以,如何管理、利用好资源来传输更多的应用数据也极其关键。 ZETA通信协议与场景关系 对于覆盖范围和电池寿命比较敏感的应用,如智慧农业,在对温度、湿度、光照等环境参数采集时,我们不需要太实时的关注这些采集数据,通常只要几十分钟内能感知到就行,更关注的是设备的电池寿命,传输距离以此来减少我们的布网成本。这个时候,我们就需要有一套能满足这种应用的广覆盖、低功耗、低成本的系统。 对于设备控制敏感的应用,如工业或者电网系统的智能表具控制,通常需要非常实时的控制或者采集数据,时延在秒级以内。这个时候就要提高数据速率跟实时监听下行数据,因此需要牺牲功耗跟覆盖范围来满足低时延的要求,所以就需要有对时延、上下行资源严格控制的系统来满足这种应用。 对于成本敏感的应用,如物流托盘资产管理/货物跟踪场景,通常我们只关心货物在不在,在哪里,并不需要对其有任何控制,设备的电量需要有一定的保障,最主要的成本需要非常低,成本效益极其关键,这个时候我们就可以牺牲掉下行资源来达到极低的功耗跟硬件成本。 对于设备量、数据量敏感的应用,如果智慧城市、智慧园区的布网中需要很多的传感器设备如温度、湿度、水压、水流、烟感等,设备量往往比较多;数据传输的频率也比较高,有可能几分钟就需要传输一次上行数据,对下行控制的需求也不会太频繁。这时候就需要一套系统能合理的管理数据的传输、降低数据冲突的概率,并且保证数据的可靠性、安全性。 因此,我们需要有不同的物联网协议来实现物联设备更顺畅的通信。基于此,纵行科技推出了 5 大物联网通信协议。本文将分别介绍各个 ZETA 协议的特点,以帮助大家选择哪种协议更适合您的物联网项目。 ZETA-P (Panging):Mesh 自组网、低时延、基于 Alopha 协议设计、远程批量升级。 ZETA-S (Time Synchronized Multi-hop):Mesh 自组网、TDM 系统、低碰撞率、远程批量升级。 ZETA-G(taG):仅单向上行、极低成本。 ZETA-C(Controlling):Mesh 自组网、下行链路优先、具有多播、轮询功能、远程批量升级。 ZETA-H(High Data Rate):Mesh 自组网、大帧数据传输、资源调度、远程批量升级。 5 种 ZETA 协议详情介绍 01 ZETA-P 协议 接入网络:模块将在访问网络时选择最佳的 AP 路由。 网络自愈:网络不稳定的网络设备将自动优化其路由。 数据上行:只要产生数据,就立即发送。 数据下行: 两种接收下行模式,ACK 下行:仅在上行传输后接收数据,省电模式;实时下行:始终从云上接收数据,功耗高。 树状拓扑:低功率网状中继可以建立最多 4 跳树式网络。 02 ZETA-S 协议 接入网络:模块将在访问网络时选择最佳的 AP 路由,入网成功后获取工作时隙跟频率。 网络自愈:网络不稳定的网络设备将自动优化其路由。 数据上行:模块在分配的时隙和分配的工作频率下传输数据。 数据下行: 两种接收下行模式,ACK 下行:仅在上行传输后开启接收下行时隙接收数据,省电模式;实时下行:在指定时间内从云接收数据(时间在服务器上可配置)。 树状拓扑:低功率网状中继可以建立最多 3 跳树式网络。 03 ZETA-G 协议 接入网络:在服务器上进行数据合法性校验。 数据上行:模块在信道监听后发送数据(如果有多个 AP,则接收多个数据)MS 只用于发送数据,AP 只用于接收数据。 04 ZETA-H 协议 接入网络:模块将在访问网络时选择最佳的 AP 路由,入网成功后获取工作时隙跟频率。 网络自愈:网络不稳定的网络设备将自动优化其路由。 数据上行:资源调度,模块需要发送上行数据时需要向 AP 进行资源请求,由 AP 完成资源调度,分配空口资源后才能上行。 数据下行: 寻呼下行降低功耗。 树状拓扑:低功率网状中继可以建立最多 2 跳树式网络。 05 ZETA-C 协议 接入网络:模块将在访问网络时选择最佳的 AP 路由,入网成功后获取工作时隙跟频率。 网络自愈:网络不稳定的网络设备将自动优化其路由。 数据上行:主动上行:模块在分配的时隙和分配的工作频率上传输数据。(较高延时)​ 轮询反馈:轮询指令后立即上行,频率资源由 AP 调度。(极低时延)​ 数据下行: 具有连续的接收下行窗口,实时从云上接收数据。(极低时延)​ 树状拓扑:网状中继最多可以建立 2 跳树式网络。 5 种 ZETA 协议参数指标 ZETA不同场景协议应用示例 智慧农业 在农业中,传感器设备需要较长的电池寿命。对于环境的变化通常不需要很实时,如温度、湿度的变化几十分钟或几个小时更新一次都可以接受,通常这些数据的数据量都比较小,并且不需要很实时的下行控制,ZETA-P 是很不错的选择。 智慧城市 在智慧城市的建设中,温度、湿度、水流、水质、漏水传感器设备也发挥着重要的作用,这些检测告警需要较实时地通知到管理部门及时响应,通常需要半小时左右上报一次数据。因此,对于设备量较多、单次上报数据量不大的场景,ZETA-S 是个很好的选择。 智慧工业 在工业领域中,对机械设备进行实时监控,进行预测性维护可防止生产线意外停机,避免造成较大损失。如果您需要采集边缘 AI 的原始数据(如设备振动数据),这些数据通常较大(几十 K 或几百 K),并且需要保证数据的准确性,ZETA-H 可以满足这种应用需求。 智能电网 在电网系统中,通常需要对各种表具进行实时的数据采集及控制。由于设备通常接着市电,功耗的要求不高,ZETA-C 的下行时延极低,可以很好的满足这种需求。 物流托盘资产管理/跟踪 目前,物流管理中需要跟踪托盘,以确定货物的位置和状况。在此场景中,设备成本和电池寿命是用户最关心的。ZETA-G 可以很好地满足这种需求,物流公司可以搭建自己的仓网来管理资产。同时,低成本的物流标签也可以配合纵行科技的高速公路网来实现货物的跟踪。 供应商A:纵行科技 https://www.zifisense.com/ 1、产品能力 (1)主推型号1:SMZT-ST31 对应的产品详情介绍 1 概述 ZETA 低功耗广域物联网模块是纵行科技推出的,高度集成的低功耗窄带通信 模块。该模块内置 ZETA ®协议,可接入纵行科技大范围无缝覆盖的城域物联 网蜂窝。采用 UART 透明传输接口,提供标准的感应器接口以及简单友好的 二次开发指令集。基于该模块,开发者可以快速实现大规模大范围覆盖的物 联网应用,同时将开发的成本和风险降至最低。 2 应用范围  无线计量和无线智能电网  物流跟踪、仓库巡检、电子标签等  工业仪器仪表无线数据采集和控制  住宅与建筑物(智能家居)控制  电子消费类产品无线遥控  无线报警与安全系统  无线传感器网络  其他类似低功耗小数据应用 3 基本特点  物联网终端与云端数据透传  自带系统时钟输出  低功耗,待机电流 5uA 以下  高稳定性,可靠性达到工业级别  SMD 元件,体积小 4 技术参数 测试条件:TA=25°C,VCC=3.3V 硬件参考设计 2、支撑 (1)技术产品 技术资料 C3020405_2G-3G-4G-5G模块_MSZT-ST31_规格书_ZIFISENSE(纵行科技)2G_3G_4G_5G模块规格书.PDF (如有侵权,联系删除) 本文章源自奇迹物联开源的物联网应用知识库Cellular IoT Wiki,更多技术干货欢迎关注收藏Wiki: Cellular IoT Wiki 知识库(https://rckrv97mzx.feishu.cn/wiki/wikcnBvAC9WOkEYG5CLqGwm6PHf) 欢迎同学们走进AmazIOT知识库的世界! 这里是为物联网人构建的技术应用百科,以便帮助你更快更简单的开发物联网产品。 Cellular IoT Wiki初心: 在我们长期投身于蜂窝物联网 ODM/OEM 解决方案的实践过程中,一直被物联网技术碎片化与产业资源碎片化的问题所困扰。从产品定义、芯片选型,到软硬件研发和测试,物联网技术的碎片化以及产业资源的碎片化,始终对团队的产品开发交付质量和效率形成制约。为了减少因物联网碎片化而带来的重复开发工作,我们着手对物联网开发中高频应用的技术知识进行沉淀管理,并基于 Bloom OS 搭建了不同平台的 RTOS 应用生态。后来我们发现,很多物联网产品开发团队都面临着相似的困扰,于是,我们决定向全体物联网行业开发者开放奇迹物联内部沉淀的应用技术知识库 Wiki,期望能为更多物联网产品开发者减轻一些重复造轮子的负担。 Cellular IoT Wiki沉淀的技术内容方向如下: 奇迹物联的业务服务范围:基于自研的NB-IoT、Cat1、Cat4等物联网模组,为客户物联网ODM/OEM解决方案服务。我们的研发技术中心在石家庄,PCBA生产基地分布在深圳、石家庄、北京三个工厂,满足不同区域&不同量产规模&不同产品开发阶段的生产制造任务。跟传统PCBA工厂最大的区别是我们只服务物联网行业客户。 连接我们 ,和10000+物联网开发者一起 降低技术和成本门槛 让蜂窝物联网应用更简单~~ 哈哈你终于滑到 最重要 的模块了, 千万不!要!划!走!忍住冲动!~ 欢迎加入飞书“开源技术交流群”,随时找到我们哦~ 点击链接 如何加入奇迹物联技术话题群 可以获取加入技术话题群攻略 Hey 物联网从业者, 你是否有了解过奇迹物联的官方公众号“ eSIM物联工场 ”呢? 这里是 奇迹物联的物联网应用技术开源wiki 主阵地,欢迎关注公众号,不迷路~ 及时获得 最新物联网应用技术沉淀发布
  • 热度 22
    2021-4-25 14:32
    1809 次阅读|
    0 个评论
    埃尔法光电 & GRL联合宣布第一款国产芯片方案认证主动式HDMI®模组
    民族企业消费类光电通讯重要里程碑 4 月 25 日(星期日),埃尔法光电 - 全球消费类光电芯片模组解决方案领导者, GRL- 高速讯号测试与解决方案领航者,今天共同宣布带有埃尔法光电 HDMI® 2.1 光电模块的主动光纤线缆 Model AFA-H-A10 , 取得了 HDMI® 2.1 主动式超高速 HDMI® 认证( UHS Program )证书 。 本次主动光纤线缆证书取得是国产芯片方案第一款取得认证的光电模组, 对民族企业消费类光电通讯有着历史性的重要意义。此款主动光纤线缆 Cat 3 HDMI 认证测试部分在 GRL 东莞 完成, EMI 电磁干扰部分在 深圳 TÜV 莱茵完成。 图 1 :埃尔法光电科技有限公司取得 HDMI® 2.1 主动式超高速线缆认证 随着技术的发展,相关的质量标准不断更新迭代,产品在认证和测试领域面临各种不同的新挑战。国产芯片方案第一款认证主动式 HDMI® 模组的诞生更是对中国智造的认可和肯定,在这个突破历史性意义的时刻, 4 月 25 日,埃尔法光电 & GRL 联合举办了战略合作仪式,共同宣告这一消费类光电通讯领域重要里程碑。 埃尔法光电科技有限公司董事长 - 黄君彬博士、总经理付全飞、合伙人童小琴, GRL 技流信息科技有限公司大中华区总经理庄益林、华南区总经理陶海霞等均出席了签约仪式, TÜV 莱茵电子电器检测认证总经理曹永新也莅临现场见证签约。本次签署仪式标志着双方友好战略合作关系的正式确立,埃尔法光电和 GRL 将充分利用各自领域的技术、经验和资源优势,携手促进中国光电通讯产业链的完善,为全球消费类光电供应链的发展做出更大贡献。 图 2 :埃尔法光电科技有限公司董事长 - 黄君彬博士(图左)与 GRL 实验室大中华区总经理 - 庄益林(图右)签约照 图 3 :埃尔法光电科技有限公司董事长 - 黄君彬博士(图左)与 GRL 实验室大中华区总经理庄益林(图右)握手合影 埃尔法光电董事长 - 黄君彬博士表示“我们很高兴取得了超高速 HDMI 线缆认证,该 AOC 采用埃尔法光电自主研发制造的模块,不仅是第一款国产芯片方案制造 HDMI® 2.1 模组,而且是第一款单独以芯片模块方案的产品形态出现的并通过认证的 HDMI® 2.1 模组,从而为众多线缆组装厂客户提供了极大的便利性。该款芯片模组方案不仅能兼容市面上所有最新的 HDMI2.1 播放和显示设备,并且非常易于线缆组装厂后端生产,从而让更多的线缆组装厂能迅速的拥有自己品牌的认证的 HDMI® 2.1 有源光缆。非常感谢 GRL 和 TÜV 莱茵一路以来的密切合作和支持。埃尔法光电作为光电芯片模块领域国家高新技术企业代表,专注于光电传输产品的开发和制造,为高清视频、长距离传输等领域客户提供高性价比的光互联解决方案,本次证书的取得更是对埃尔法光电实力与品质的认可,未来,埃尔法光电将联手 GRL 共同推动产品高质量发展,为厂商和消费者创造市场双赢。 ” “目前的各项通信标准协会,如 HDMI 、 IEEE 、 USB 、 DP 等,长期以来一直由国外的芯片和模组厂商制定标准,因此,国内芯片和模组厂商在国际通信标准协会上一直以来总处于被动的地位。埃尔法光电在本次认证的过程中,坚持采用国产芯片方案,与国产芯片团队一起调试芯片的各项参数,终于攻克了“卡脖子”技术, 成为第一款国产芯片自主方案制造的获得认证的模组,牢牢把握了国产光电芯片和模块领域创新发展的主动权 。 “ GRL 大中华区总经理 - 庄益林指出,“在后疫情时代,中国科技的发展脚步并没有减缓,在响应市场需求上,主动超高速 HDMI® 线缆为消费者带来了广阔的前景,包含游戏机应用,电视应用,电脑应用等广阔的使用场景, HDMI® 2.1 主动电缆将迎来新的爆发期。 GRL 实验室作为全球第一批官方授权且指定的 HDMI Forum ATC 和 HDMI ATC, 很荣幸参与到这个重要成就, 并在此与埃尔法光电建立一个友好密切的战略合作关系,相信通过未来更加密切的合作,实现优势互补,市场拓展,和战略共赢。” HDMI ® , HDMI ® High-Definition Multimedia Interface, Ultra High Speed HDMI ® , Ultra High Speed HDMI ® Cable 认证测试和 HDMI ® 商标为 HDMI Licensing Administrator, Inc. 的注册商标。
  • 热度 14
    2014-5-4 11:25
    1609 次阅读|
    0 个评论
      线性模组也叫电动模组、数控滑台、单轴机械手,在工业自动化领域普遍运用,同时在非标自动化设备中广泛运用,供应TOYO线性滑台模组产品的美莱克公司的技术工程师这里向大家列举一些例子:www.samsrmotor.com.cn     1、动检测机,负责将待检验产品送到CCD检测范围内;     2、动植螺母机,负责将加热后的螺母装到汽车零件内;     3、线式全自动点胶设备,实现空间三轴自动点胶;     4、动组装机,负责将一个零件装到另一个零件上;     5、动焊接设备,模组负责焊*的运动。   线性模组的设计与选择包括:     1、运动精度,最高可达0.01mm;     2、负荷,根据需要选择,从1KG-50KG均有相应机型;     3、传动系统,包括同步带轮传动和滚珠丝杆传动两种; 4、驱动系统,一般有伺服电机或步进电机驱动。
相关资源
  • 所需E币: 5
    时间: 2024-3-14 20:32
    大小: 1.32MB
    上传者: 丙丁先生
    关于Rd-03模组的说明书,它通常会包含模组的详细介绍、功能特点、技术规格、使用方法、安装步骤、调试指南、故障排除等重要信息。这些内容对于用户正确安装、配置和使用Rd-03模组至关重要。
  • 所需E币: 5
    时间: 2024-3-14 20:48
    大小: 676.89KB
    上传者: 丙丁先生
    对于Rd-03系列模组的天线罩设计指南,这通常涉及到工程设计和材料选择,以确保天线罩能够有效地保护天线免受物理损害和环境影响,同时最小化对雷达信号传输的影响。以下是一些一般性的设计建议,但请注意,具体的设计参数和步骤可能需要根据Rd-03系列模组的具体规格和应用场景进行调整。材料选择:选择具有低介电常数和低损耗的材料,以减少对雷达信号的衰减。考虑材料的机械强度、耐候性和化学稳定性,以确保天线罩的耐用性。尺寸和形状:根据模组的尺寸和天线类型,设计合适大小的天线罩。尽量减少天线罩的突出部分,以避免干扰雷达信号的传输。开口和缝隙:确保天线罩的开口和缝隙足够大,以允许雷达信号自由传输。注意开口和缝隙的位置和形状,避免产生不必要的反射或散射。安装和固定:设计合适的安装结构,确保天线罩能够牢固地固定在模组上。考虑使用密封材料或结构,以防止水或其他液体进入天线罩内部。环境适应性:考虑模组可能面临的工作环境,如温度、湿度、振动等,并设计相应的保护措施。在可能的情况下,进行环境适应性测试,以确保天线罩在实际使用中的性能。电磁兼容性:确保天线罩的设计不会对模组的其他部分产生电磁干扰。如果需要,进行电磁兼容性测试,以确保整个系统的正常工作。请注意,这些只是一般性的设计建议,并不构成具体的设计指南。
  • 所需E币: 1
    时间: 2023-11-1 11:55
    大小: 80.84KB
    上传者: MOLUN
  • 所需E币: 5
    时间: 2023-2-6 23:31
    大小: 1.16MB
    上传者: czd886
    基于ANDS协议的物联网模组在智能家居上的应用
  • 所需E币: 5
    时间: 2023-2-6 21:00
    大小: 1.7MB
    上传者: czd886
    鸿蒙Hi3861IoTWiFi模组的智能家居设计
  • 所需E币: 1
    时间: 2022-8-3 22:55
    大小: 32.46KB
    上传者: xyzzyxaaa
    PZ-ESP8266(模组)模块实验--(适用于普中51全系列开发板).zip
  • 所需E币: 0
    时间: 2022-8-2 17:52
    大小: 904.51KB
    上传者: samewell
    ESP-12F模组_LED的电气连接.rar
  • 所需E币: 0
    时间: 2022-3-17 00:13
    大小: 422.73KB
    上传者: samewell
    智能5G智能模组SRM930.pdf
  • 所需E币: 0
    时间: 2022-3-15 02:26
    大小: 1.56MB
    上传者: samewell
    超小体积4G模组_Quectel_EC800N-CN_硬件设计手册.pdf
  • 所需E币: 0
    时间: 2022-3-15 02:25
    大小: 1.2MB
    上传者: samewell
    带北斗定位的NB模组_Quectel_BC20_硬件设计手册.pdf
  • 所需E币: 0
    时间: 2022-1-14 17:34
    大小: 1.32MB
    上传者: samewell
    ESP-32F模组规格书.rar
  • 所需E币: 0
    时间: 2021-9-27 17:05
    大小: 1.44MB
    上传者: Argent
    电子产品日新月异,不管是硬件工程师还是软件工程师,基本的模电、数电、微机原理、信号处理等知识是必备的条件,从二极管到三极管,从单片机到多核MCU,3G网络到5G产品的普及,不管电子产品的集成度怎么高,其产品还是少不了电阻电容电感,每个元器件在电路中必然有其作用,有兴趣了解的网友,下载学习学习吧。
  • 所需E币: 5
    时间: 2021-9-19 11:50
    大小: 179.06KB
    上传者: ZHUANG
    特大规模组合电路测试数据产生方法研究
  • 所需E币: 0
    时间: 2021-8-25 12:04
    大小: 4.85MB
    上传者: milktea88
    手机照相模组-Lens介绍
  • 所需E币: 1
    时间: 2021-4-27 16:26
    大小: 294.85KB
    上传者: Argent
    AI产品层出不穷,手里收藏了有关电子通信,毕业设计等资料,方案诸多,可实施性强。单片机的应用开发,外设的综合运用,纵使智能产品设计多么复杂,但其实现的基本功能都离不开MCU的电路设计与驱动编程,无论是使用51单片机还是AVR单片机,其方案的选择因项目需求而定,需要这方面资料的工程师们,看过来吧。
  • 所需E币: 0
    时间: 2021-3-25 17:54
    大小: 782.78KB
    上传者: Argent
    全志方案在消费类电子占有很大的市场,随着产品的不断升级优化,全志方案不仅仅在安卓平板,视频监控、广告应用等领域崭露头角,本人收集些有关全志方案的开发资料,希望对正在使用全志方案的网友有所帮助。
  • 所需E币: 0
    时间: 2021-3-25 18:03
    大小: 710.18KB
    上传者: Argent
    全志方案在消费类电子占有很大的市场,随着产品的不断升级优化,全志方案不仅仅在安卓平板,视频监控、广告应用等领域崭露头角,本人收集些有关全志方案的开发资料,希望对正在使用全志方案的网友有所帮助。
  • 所需E币: 0
    时间: 2021-3-25 23:31
    大小: 782.78KB
    上传者: Argent
    全志方案在消费类电子占有很大的市场,随着产品的不断升级优化,全志方案不仅仅在安卓平板,视频监控、广告应用等领域崭露头角,本人收集些有关全志方案的开发资料,希望对正在使用全志方案的网友有所帮助。
  • 所需E币: 0
    时间: 2021-3-17 22:53
    大小: 1.78MB
    上传者: zyn518
    OV5640_自动对焦照相模组应用指南(DVP_接口)__R2.13C
  • 所需E币: 0
    时间: 2021-3-17 17:37
    大小: 98.03KB
    上传者: czdian2005
    5.5寸1920x1080显示模组BOTTOM-SMT