根据ST提供的代码修改,从ADC通过DMA到memory的变量。
原来的代码与mini板的pin不符,作了一点修改:
1. RCC initialization,注意开GPIOA、DMA和ADC的clock
2. GPIOA pin11 (ADC_IN1)的初始化,设置其为analog input
3. DMA和ADC 的初始化
Note:设置IAR工作在Simulation模式ADC_GetCalibrationStatus(ADC1)会始终为SET。
还有些地方没有搞懂:
#define ADC1_DR_Address ((u32)0x4001244C) 这个地址在其手册没有没有搜索到?
LPFQ48的Pin11 是个可复用的pin,不需要remap吗?系统提供的remap函数里面都没有ADC的参数,是否只要把该pin设为analog input系统就认为它是AD input 了?
希望各位指定一下
/******************** (C) COPYRIGHT 2007 STMicroelectronics ********************
* File Name : main.c
* Author : MCD Application Team
* Date First Issued : 02/05/2007, Modified by Ray 04/10/2008
* Description : Main program body
********************************************************************************
// 1 ADC inside & 16 pins can act as AD input. For 48LQFN, Pin 11 is ADC_IN1
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_lib.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define ADC1_DR_Address ((u32)0x4001244C)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
ADC_InitTypeDef ADC_InitStructure;
/*typedef struct
{ u32 ADC_Mode;
FunctionalState ADC_ScanConvMode; whether the conversion is performed in multi or single channel mode
FunctionalState ADC_ContinuousConvMode; continuous or single mode
u32 ADC_ExternalTrigConv; define external trigger
u32 ADC_DataAlign; specify the align is right or left
u8 ADC_NbrOfChannel; specify the number of ADC channels
} ADC_InitTypeDef */
DMA_InitTypeDef DMA_InitStructure;
/*typedef struct
{ u32 DMA_PeripheralBaseAddr; the number defines the peripheral base address for DMA channelx
u32 DMA_MemoryBaseAddr; memory base address for DMA channelx
u32 DMA_DIR; specify the peripheral is source or destination
u32 DMA_BufferSize;
u32 DMA_PeripheralInc; whether the peripheral address is incremented or not
u32 DMA_MemoryInc; whether the memory address is incremented or not
u32 DMA_PeripheralDataSize; configures the peripheral data width
u32 DMA_MemoryDataSize;
u32 DMA_Mode; circular of normal mode
u32 DMA_Priority;
u32 DMA_M2M; whether enable memory to memory transfer
} DMA_InitTypeDef;
*/
vu16 ADC_ConvertedValue; // typedef volatile unsigned short vu16; (stm32f10x_type.h) *
ErrorStatus HSEStartUpStatus;
/* Private function prototypes -----------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);
void NVIC_Configuration(void);
void SysTick_Config(void);
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : main
* Description : Main program
* Input : None
* Output : None
* Return : None
*******************************************************************************/
int main(void)
{
#ifdef DEBUG
debug();
#endif
/* System clocks configuration ---------------------------------------------*/
RCC_Configuration();
/* NVIC configuration ------------------------------------------------------*/
NVIC_Configuration();
/* GPIO configuration ------------------------------------------------------*/
GPIO_Configuration();
/* Configure the systick */
//SysTick_Config();
//LcdShow_Init();
/* DMA channel1 configuration ----------------------------------------------*/
DMA_DeInit(DMA_Channel1); // reset DMA registers to default values
DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; //(u32)0x4001244C
DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&ADC_ConvertedValue;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 1;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA_Channel1, &DMA_InitStructure);
/* Enable DMA channel1 */
DMA_Cmd(DMA_Channel1, ENABLE);
/* ADC1 configuration ------------------------------------------------------*/
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &ADC_InitStructure);
/* ADC1 regular channel_1 configuration */
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 1, ADC_SampleTime_55Cycles5);
/* Enable ADC1 DMA */
ADC_DMACmd(ADC1, ENABLE);
/* Enable ADC1 */
ADC_Cmd(ADC1, ENABLE);
/* Enable ADC1 reset calibaration register */
ADC_ResetCalibration(ADC1);
/* Check the end of ADC1 reset calibration register */
while(ADC_GetResetCalibrationStatus(ADC1));
//In simulation, ADC_GetResetCalibrationStatus(ADC1) always is SET
/* Start ADC1 calibaration */
ADC_StartCalibration(ADC1);
/* Check the end of ADC1 calibration */
while(ADC_GetCalibrationStatus(ADC1));
/* Start ADC1 Software Conversion */
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
while(1)
{
}
}
/*******************************************************************************
* Function Name : RCC_Configuration
* Description : Configures the different system clocks.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RCC_Configuration(void)
{
/* RCC system reset(for debug purpose) */
RCC_DeInit();
/* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON); //enable high speed external oscillator
/* Wait till HSE is ready */
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if(HSEStartUpStatus == SUCCESS)
{
/* Enable Prefetch Buffer */
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
/* Flash 2 wait state */
FLASH_SetLatency(FLASH_Latency_2);
/* HCLK = SYSCLK */
RCC_HCLKConfig(RCC_SYSCLK_Div1); //config AHB clock, it can be SYSCLK/1 to /512
/* PCLK2 = HCLK */
RCC_PCLK2Config(RCC_HCLK_Div1); //config high speed AHB clock
/* PCLK1 = HCLK/2 */
RCC_PCLK1Config(RCC_HCLK_Div2); //config low speed AHB clock
/* ADCCLK = PCLK2/4 */
RCC_ADCCLKConfig(RCC_PCLK2_Div4); //config ADC clock from PCLK2/2 ~ /8
/* PLLCLK = HSE * 14 = 56 MHz */ //config PLL source and multiplication factor
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_14); //HSE is source, factor is 14
/* Enable PLL */
RCC_PLLCmd(ENABLE);
/* Wait till PLL is ready */
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{
}
/* Select PLL as system clock source, other options are HSE and HSI */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/* Wait till PLL is used as system clock source */
while(RCC_GetSYSCLKSource() != 0x08)
{
}
}
/* Enable peripheral clocks --------------------------------------------------*/
/* Enable DMA clock */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA, ENABLE);
/* Enable ADC1 and GPIOC clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_GPIOA, ENABLE);
}
/*******************************************************************************
* Function Name : GPIO_Configuration
* Description : Configures the different GPIO ports.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* Configure GPIOA.1 Pin11 (ADC Channel 1) as analog input -------------------------*/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
/*******************************************************************************
* Function Name : NVIC_Configuration
* Description : Configures Vector Table base location.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;
#ifdef VECT_TAB_RAM
/* Set the Vector Table base location at 0x20000000 */
NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#else /* VECT_TAB_FLASH */
/* Set the Vector Table base location at 0x08000000 */
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
#endif
/* Configure the Priority Group to 2 bits */
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
/* enabling interrupt */
NVIC_InitStructure.NVIC_IRQChannel=USB_LP_CAN_RX0_IRQChannel; //USB lower than CAN or RX
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* enabling interrupt */
NVIC_InitStructure.NVIC_IRQChannel=TIM2_IRQChannel;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Configure the SysTick handler priority */
NVIC_SystemHandlerPriorityConfig(SystemHandler_SysTick, 2, 0);
}
#ifdef DEBUG
/*******************************************************************************
* Function Name : assert_failed
* Description : Reports the name of the source file and the source line number
* where the assert error has occurred.
* Input : - file: pointer to the source file name
* - line: assert error line source number
* Output : None
* Return : None
*******************************************************************************/
void assert_failed(u8* file, u32 line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* Infinite loop */
while (1)
{
}
}
#endif
/******************* (C) COPYRIGHT 2007 STMicroelectronics *****END OF FILE****/
/* NOTE
volatile 影响编译器编译的结果,指出,volatile 变量是随时可能发生变化的,与volatile变量有关的运算,不
要进行编译优化,以免出错,(VC++ 在产生release版可执行码时会进行编译优化,加volatile关键字的变量有关的运算,
将不进行编译优化。)。
例如:
volatile int i="10";
int j = i;
...
int k = i;
volatile 告诉编译器i是随时可能发生变化的,每次使用它的时候必须从i的地址中读取,因而编译器生成的可执行码会重新从
i的地址读取数据放在k中。
而优化做法是,由于编译器发现两次从i读数据的代码之间的代码没有对i进行过操作,它会自动把上次读的数据放在k中。
而不是重新从i里面读。这样以来,如果i是一个寄存器变量或者表示一个端口数据就容易出错,所以说volatile可以保证对特
殊地址的稳定访问,不会出错。 */
文章评论(0条评论)
登录后参与讨论