§5.3 基本积分公式
基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式.
因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式.
(1) ( 5.6 )
(2) ( 5.7 )
(3) ( 5.8 )
(4) ( 5.9 )
(5) ( 5.10 )
(6) ( 5.11 )
(7) ( 5.12 )
(8) ( 5.13 )
(9) ( 5.14 )
(10) ( 5.15 )
(11) ( 5.16 )
对这些公式应正确熟记.可根据它们的特点分类来记.
公式(1)为常量函数0的积分,等于积分常数.
公式(2)、(3)为幂函数的积分,应分为与.
当时,,
积分后的函数仍是幂函数,而且幂次升高一次.
特别当时,有 .
当时,
公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故(,)式右边的是在分母,不在分子,应记清.
当时,有 .
是一个较特殊的函数,其导数与积分均不变.
应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.
公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.
公式(10)是一个关于无理函数的积分
公式(11)是一个关于有理函数的积分
下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分.
例1 求不定积分 .
分析:该不定积分应利用幂函数的积分公式.
解:
(为任意常数)
例2 求不定积分 .
分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.
解:由于,所以
(为任意常数)
例3 求不定积分.
分析:将按三次方公式展开,再利用幂函数求积公式.
解:
(为任意常数)
例4 求不定积分 .
分析:用三角函数半角公式将二次三角函数降为一次.
解:
(为任意常数)
例5 求不定积分.
分析:基本积分公式表中只有
但我们知道有三角恒等式:
解:
(为任意常数)
同理我们有:
(为任意常数)
例6
(为任意常数)
文章评论(0条评论)
登录后参与讨论