操作概论
ADI SRD Design Studio的核心为ADF7xxx器件模型库,其中包含了每个器件的参数化数据,例如,VCO和频率合成器相位噪声、VCO增益、频率范围、可用的数据滤波类型、灵敏度,以及噪声系数。使用这些模型,设计人员就能够利用用于调制RF载波的基带数据来执行非线性时域分析,获得VCO的时域输出。基带数据可选择伪随机(PRBS)或周期(010101)样式。与传统的线性分析不同,非线性时域分析能够精确的模拟VCO频率跟踪、非线性VCO增益曲线,以及电荷泵饱和等非线性效应。然后,对时域波形进行FFT变换,以获得频谱分析仪输出。
通用的频谱分析仪使用户能够像使用商用频谱分析仪一样调整分辨率带宽、检波器类型,以及扫描次数。分辨率带宽可在100Hz至300kHz之间进行设置,而测量范围可在1kHz至3MHz之间选择。用户还可以选择是使用峰值检波器让分析仪在各个FFT窗口中给出最大值,还是选择均值检波器让分析仪在各个FFT窗口中给出平均值。这些可调参数非常有用,这是因为各个标准都指定了测量设备中应该采用的不同测量条件——包括分辨率带宽、范围,以及检波器类型。在频谱分析仪模式的各种预设测试中,仿真器考虑了所有这些方面。表2列出了这些有用的预设测试,它们意味着用户能够快速测试相关标准,而无需钻研相关文件。
测试项 | 标准 | 预设测量 |
1 | ETSI EN 300 220 | 调制带宽 |
2 | ETSI EN 300 220 | 邻近信道功率 |
3 | ETSI EN 300 220 | 占用带宽 |
4 | FCC 15.231 | –20 dB 带宽 |
5 | FCC 15.247 | –20 dB 带宽 |
6 | FCC 15.247 | –6 dB 带宽 |
7 | FCC 15.247 | 3 kHz 功率频谱密度 |
8 | FCC 90.210 | 辐射遮蔽 D |
9 | FCC 15.249 | –20 dB 带宽 |
10 | FCC 15.231 (b) | 场强 |
11 | FCC 15.231 (e) | 场强 |
12 | ARIB STD-T67 | 占用带宽(25 kHz) |
13 | ARIB STD-T67 | 占用带宽(12.5 kHz) |
表2、频谱分析仪模式的预设测量列表
除瞬态和频谱分析仪模式之外,还可执行PLL频域分析来计算PLL环路滤波器件,并评估相位裕量和增益裕量。通过在仿真中调整PLL环路带宽,用户可以观察到发送调制频谱和相位眼图开度的效果,这使用户可以适当的优化环路滤波器,而不必依赖于少量的供应商提供的滤波器选择表或基本指南。在典型设置中,所有三个主要仿真可以在不到两秒的时间内运行完毕。
传播模型
链路分析工作表是ADI SRD Design Studio中另一项有用的工具,可用于估计各种条件下的链路预算和范围。与所有其它任务一样,它集成在主仿真器中。为符合辐射遮蔽而进行的数据速率更改将引起灵敏度的相应变化,从而影响链路预算,并最终影响传播范围。与独立工具集相比,这项功能的优势在于,一个参数的变化(如数据速率)将会影响到其它的工作表。
链路分析首先计算链路预算,也就是发送功率与接收灵敏度之间的差值,同时会考虑所有的滤波损耗或天线损耗。图3所示的是用于这个仿真的器件设置。
图3、链路分析模块
然后,可以通过在仿真中增大天线之间的距离来确定范围,直到路径损耗等于链路预算为止,这个位置就是链路裕量等于0 dB的地方。路径损耗通过用户选择的传播模型进行计算;可支持三种不同的传播模型:自由空间、地上,以及简单室内。
A. 自由空间的传播模型
自由空间模型假设发射机与接收机之间不存在障碍物及任何明显的反射物体(包括地)。用R表示发射机与接收机之间的空间距离,λ表示波长,PL表示路径损耗,下式给出大多数实际的发射机/接收机布局的最大传播距离。
B. 地上传播模型
发射机位于地平面以上,高度为hT,接收机高度为hR,它们之间的距离为R。下式给出了清晰可视信道(LOS)条件下相当精确的结果——例如,在海滩或相对较宽的道路上。这个仿真表明,使用ADF7xxx器件有可能实现3km以上的传播范围,并且无需外部功放(PA)或低噪声放大器(LNA)。
C. 简单室内传播模型
上式中P0为1m处的路径损耗,n为取决于环境的指数。参考文献3列出了n在不同环境下(如工厂地面、多层办公建筑等)的一些取值。大多数设计人员会根据经验结果来设定n的值。
ADI SRD Design Studio中的另一项有用的任务是包格式化工作表。它使用户能够输入给定的包格式,了解包长度对电池寿命的影响,选择能带来低错误触发几率的同步字,并根据包长度将误码率(BER)转换为相应的误包率(PER)。由于有些IC供应商会以BER的形式表示灵敏度,而其它供应商则会以PER的形式表示灵敏度,因此,从BER到PER的转换是很有用的。
在实验室测试仿真设置
一旦仿真完成,并获得了可接受的结果,那么就可以保存文件,并把仿真设置输出到ADI公司的ADF7xxx编程软件中。然后,就可以使用程序设备应用来运行平台测试。这一功能将向ADF7xxx编程软件输出频率、数据速率、调制类型等,因此可在实验室里进行快速的器件配置。平台测量与仿真结果十分接近,如图4所示。在868MHz频率下,对9.6 kbps GFSK信号的仿真与平台测量结果非常吻合。当进行这些比较时,应当注意仿真器需要采用与电路板上相同的PLL环路滤波器,因为它会影响输出频谱的形状。
图4、仿真和实验室测量结果的比较
结论
ADI SRD Design Studio于2007年7月发布,截止到撰写这篇文章时,这款工具已被下载了5000多次。ADI公司致力于改善这款软件的功能,为此设立了在线论坛,使用户可以提出可疑的错误、问题,或对下一版软件的建议。这个论坛位于Radiolab网站上,可通过ADI SRD Design Studio进行访问。用户还应定期去这个网站下载软件补丁或进行升级。
随着ADI公司产品系列的不断扩展,软件工具中将会添加新的具有不同频率的无线器件,并支持不同的调制方案。ADI SRD Design Studio将会成为无线连接设计人员工具套件中十分有用的组成部分,并成为利用ADI公司ADF7xxx系列发射机或收发器进行设计的必要工具。
参考文献
作者: | |
Austin Harney [austin.harney@analog.com] 与1999年获得爱尔兰国立都柏林大学工学学士学位,并在毕业后加入ADI公司,现任Limerick ISM频段无线产品线应用工程师。业余时间,他喜欢足球、音乐,以及与他的女儿共度闲暇时光。 |
文章评论(0条评论)
登录后参与讨论