原创 tl431

2007-8-5 19:32 1867 4 4 分类: 汽车电子

TL431特性及应用


TL431PDF资料下载



1 TL431的简介


德州仪器公司(TI)生产的TL431是一是一个有良好的热稳定性能的三端可调分流基准源。它的输出
电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值(如图2)。该器件的典型动态阻抗为0.2Ω,在很多应用中可以用它代替
齐纳二极管,例如,数字电压表,运放电路、可调压电源,开关电源等等。


tl431_5.jpg


左图是该器件的符号。3个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。TL431的具体功能可以用如图1的功能模块示意。


tl431_6.jpg


由图可以看到,VI是一个内部的2.5V基准源,接在运放的反相输入端。由运放的特性可知,只有当REF端(同相端)的电压非常接近VI(2.5V)时,三极管中才会有一个稳定的非饱和电流通过,而且随着REF端电压的微小变化,通过三极管
图1 的电流将从1到100mA变化。当然,该图绝不是TL431的实际内部结构,所以不能简单地用这种组合来代替它。但如果在设计、分析应用TL431的电路时,这个模块图对开启思路,理解电路都是很有帮助的,本文的一些分析也将基于此模块而展开。


2. 恒压电路应用


tl431_7.jpg


前面提到TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通
过从阴极到阳极很宽范围的分流,控制输出电压。如图2所示的电路,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V
o增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+
R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,
在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 mA 。


当然,这个电路并不太实用,但它很清晰地展示了该器件的工作原理在应用中的方法。将这个电路稍加改动,就可以得到在很多实用的电源电路,如图3,4。



图3 大电流的分流稳压电路


tl431_8.jpg


图4 精密5V稳压器


tl431_9.jpg


3. 恒流电路应用


tl431_10.jpg


由前面的例子我们可以看到,器件作为分流反馈后,REF端的电压始终稳定在2.5V,那么接在REF端和地间的电阻中流过的电流就应是恒定的。利用这个特点,可以将TL431应用很多恒流电路中。


如左图5是一个实用的精密恒流源电路。原理很简单,不再赘述。但值得注意的是,TL431的温度系数为30ppm/℃,所以输出恒流的温度特性要比普通镜像恒流源或恒流二极管好得多,因而在应用中无需附加温度补偿电路。


图5下面就介绍一个用该器件为传感器电桥提供恒定偏流的电路,如图6。


tl431_11.jpg


这是一个已连成桥路的硅压传感器的前级处理电路。Vref/R2的值应设为电桥工作所必要的恒定电流,该电流值通常会由传感器制造商提供。流经TL431阴极的电流由R1和电源电压Vs决定,在应用中通常让它等于桥路电流,但一定要注意大于1mA。


由于TL431非常易于实现恒压或恒流,而且有很好的温度稳定性,因此很适合于仪表电路、传感器电路等设计应用。在此方面的应用例子很多,设计原理并不复杂,本文不再一一介绍。


4. 可控分流特性的应用


由第1节介绍的功能模块图,当REF端的电压有微小变化时,从阴极到阳极的分流将随之在1~100mA内变化。利用这种可控分流的特性,可以用小的电压变化控制继电器、指示灯等,甚至可直接驱动音频电流负载。如图7是此应用的一个简单400mW单声道功率放大电路。


点击看大图



图7


点击看大图



图8


5. 在开关电源上的应用



在过去的普通开关电源设计中,通常采用将输出电压经过误差放大后直接反馈到输入端的模式。这种电压控制的模式在某些应用中也能较好地发挥作用,但随着技术
的发展,当今世界的电源制造业大多已采用一种有类似拓扑结构的方案。此类结构的开关电源有以下特点:输出经过TL431(可控分流基准)反馈并将误差放
大,TL431的沉流端驱动一个光耦的发光部分,而处在电源高压主边的光耦感光部分得到的反馈电压,用来调整一个电流模式的PWM控制器的开关时间,从而
得到一个稳定的直流电压输出。上图是一个实用的4W开关型5V直流稳压电源的电路。该电路采用了此种拓扑结构并同时使用了TOPSwitch技术。图中
C1、L1、C8和C9构成EMI滤波器,BR1和C2对输入交流电压整流滤波,D1和D2用于消除因变压器漏感引起的尖峰电压,U1是一个内置
MOSFET的电流模式PWM控制器芯片,它接受反馈并控制整个电路的工作。D3、C3是次极整流滤波电路,L2和C4组成低通滤波以降低输出纹波电压。
R2和R3是输出取样电阻,两者对输出的分压通过TL431的REF端来控制该器件从阴极到阳极的分流。这个电流又是直接驱动光耦U2的发光部分的。那么
当输出电压有变大趋势时,Vref随之增大导致流过TL431的电流增大,于是光耦发光加强,感光端得到的反馈电压也就越大。U1在接受这个变大反馈电压
后将改变MOSFET的开关时间,输出电压随改变而回落。事实上,上面讲述的过程在极短的时间内就会达到平衡,平衡时Vref=2.5V,又有R2=
R3,所以输出为稳定的5V。这里要注意的是,不再能通过简单地改变取样电阻R2、R3的值来改变输出电压,因为在开关电源中每个元件的参数对整个电路工
作状态的影响都会很大。按图中所示参数时,电路可在90VAC~264VAC(50/60Hz)输入范围内,输出+5V,精度优于±3%,输出功率为
4W,最大输出电流可达0.8A,典型变换效率为70%。




TL431实验手记



1、TL431的简介


TL431是一是一个有良好的热稳定性能的三端可调分流基准源。它的输出电压用两个电阻就可以任意地设置到从Vref(2.5V)到36V范围内的任何值。


图1是该器件的符号。3个引脚分别为:阴极(CATHODE)、阳极(ANODE)和参考端(REF)。图2是TL431的外形图。图3是TL431的内部示意图。


image11.gif


图1


image14.gif


图2


image12.gif


图3


2、恒压电路应用


TL431的内部含有一个2.5V的基准电压,所以当在REF端引入输出反馈时,器件可以通过从阴极
到阳极很宽范围的分流,控制输出电压。如图4所示的电路中,当R1和R2的阻值确定时,两者对Vo的分压引入反馈,若V
o增大,反馈量增大,TL431的分流也就增加,从而又导致Vo下降。显见,这个深度的负反馈电路必然在VI等于基准电压处稳定,此时Vo=(1+
R1/R2)Vref。选择不同的R1和R2的值可以得到从2.5V到36V范围内的任意电压输出,特别地,当R1=R2时,Vo=5V。需要注意的是,
在选择电阻时必须保证TL431工作的必要条件,就是通过阴极的电流要大于1 mA 。


image13.gif


图4


3、实验手记


阻值取值:R0取1.5K,R1、R2分别取10K,按结果,应得到5V的输出电压。Vin使用12V,实测电压为5V。Vin使用24V,实测电压5V(我的3
1/2位电表的显示值),因此,此种器件的精度很高。


接入负载,在C、A端并接负载电阻,Vin用12V。当负载电阻大于2K时,输出电压几乎看不出任何变化。当电阻小于2K时,输出电压开始减小,此时应当是前面所说的阴极电流的条件不符合了。





文章评论0条评论)

登录后参与讨论
我要评论
0
4
关闭 站长推荐上一条 /2 下一条