最近一直在和蚂蚁打交道——用蚁群算法来做路径规划。这小东西可把我折腾坏了,连晚上睡觉都感觉脑袋里有蚂蚁在爬啊爬的。经过n天的艰苦奋战,总算把这些小东西给驯服了,哈哈,兴奋中…。<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />
蚁群软件计算结果截图:
用国际通用的eil51数据所得结果最好为435,目前世界的最好结果为426,还是有些差距,我会作进一步优化!
附上一些介绍蚁群算法的资料:
蚁群算法(ant colony optimization,ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型技术。它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。蚁群算法是一种模拟进化算法。初步的研究表明该算法具有许多优良的性质。针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值。蚁群算法是一种求解组合最优化问题的新型通用启发式方法,该方法具有正反馈、分布式计算和富于建设性的贪婪启发式搜索的特点。
首先我们要理解蚂蚁是如何觅食的,蚂蚁平时在巢穴附近作无规则行走,一量发现食物并不立即进食而是将之搬回蚁穴与其它蚂蚁分享,在食物小时则独自搬回蚁穴,否则就回蚁穴搬兵,一路上会留下外激素,食物越大外激素的浓度就越大,越能吸引其它的蚂蚁过去一起搬去食物,这样最终就能将食物全部搬回蚁穴。这个过程用程序实现看似非常复杂,要编写一个“智能”的蚂蚁也看似不太可能,事实上每个蚂蚁只做了非常简单的工作:检查某个范围内有无食物,并逐渐向外激素浓的方向运动。简而言之,蚁群运动无非是同时反复执行多个简单规则而已。下面详细说明蚁群中的这些简单规则:
1、范围:蚂蚁观察到的范围是一个方格世界,蚂蚁有一个参数为速度半径(一般是3),那么它能观察到的范围就是3*3个方格世界,并且能移动的距离也在这个范围之内。
2、环境:蚂蚁所在的环境是一个虚拟的世界,其中有障碍物,有别的蚂蚁,还有外激素,外激素有两种,一种是找到食物的蚂蚁洒下的食物外激素,一种是找到窝的蚂蚁洒下的窝的外激素。每个蚂蚁都仅仅能感知它范围内的环境信息。环境以一定的速率让外激素消失。
3、觅食规则:在每只蚂蚁能感知的范围内寻找是否有食物,如果有就直接过去。否则看是否有外激素,并且比较在能感知的范围内哪一点的外激素最多,这样,它就朝外激素多的地方走,并且每只蚂蚁多会以小概率犯错误,从而并不是往外激素最多的点移动。蚂蚁找窝的规则和上面一样,只不过它对窝的外激素做出反应,而对食物外激素没反应。
4、移动规则: 每只蚂蚁都朝向外激素最多的方向移,并且,当周围没有外激素指引的时候,蚂蚁会按照自己原来运动的方向惯性的运动下去,并且,在运动的方向有一个随机的小的扰动。为了防止蚂蚁原地转圈,它会记住最近刚走过了哪些点,如果发现要走的下一点已经在最近走过了,它就会尽量避开。
5、避障规则:如果蚂蚁要移动的方向有障碍物挡住,它会随机的选择另一个方向,并且有外激素指引的话,它会按照觅食的规则行为。
7、播撒外激素规则:每只蚂蚁在刚找到食物或者窝的时候撒发的外激素最多,并随着它走远的距离,播撒的外激素越来越少。
预期的结果:各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种信息素,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物!有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果令开辟的道路比原来的其他道路更短,那么,渐渐,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。
文章评论(0条评论)
登录后参与讨论