原创 [译完] Rapid System Prototyping with FPGAs - 4.4.2

2010-6-23 15:59 3579 3 3 分类: FPGA/CPLD

4.4.2 Design Reviews



Design
reviews are very important to the FPGA design process. Reviews should be
multidisciplinary and include mechanical and software engineers in addition to
hardware and FPGA engineers.
The requirements
review should be thorough but not overly formal. The objective of the review is
the make sure that everyone is aware of the requirements from the earliest stages
of the design to avoid design rework later in the design cycle. The following lists
provide a summarized list of those objectives, factors and topics relevant to a
design review.



       Design Review Objectives



  • Present and discuss design
    requirements and requirement updates since last official design review with the
    entire design team.
  • Present how critical and
    difficult design requirements and objectives are being met and alternative
    implementations which were evaluated.
  • Reviews are critical to
    catching design issues that may be problems in the future. A project without
    enough time to prepare for and hold reviews will likely encounter unnecessary
    delays.






       Design Review Factors



  • Present current design status,
    design updates, decision, current architecture, updated requirements
  • Consider full or partial
    verification matrix or table to present how critical design requirements are
    being met
  • Should include block diagrams
  • Record, track and resolve
    issues identified during the review
  • Identify critical design issues
    and challenges (risk)
  • Focus on high-risk circuit,
    function and interface implementations
  • Present critical Finite State
    Machines (FSMs)
  • Identify signals targeted for
    global resources
  • Detailed clock implementation
    overview
  • Focus on synchronous design
    implementation
  • Highlight any unable to be avoided
    asynchronous circuitry; focus extra design review on this functionality
  • Review all critical design
    interfaces and clock domain boundaries (resynchronization)
  • How high-speed signals and
    buses will be resynchronized at the FPGA I/O blocks
  • Present power and thermal
    estimates
  • Present mechanical
    considerations (device size and height, likely number of board layers, proposed
    access to FPGA configuration and test headers in deliverable product configuration,
    clearances for device rework)
  • Power-on reset approach
  • Design power-up sequence,
    timing and how all I/O power-up, configuration and reset states will interact
    with the board-level circuitry
  • I/O signals requiring special
    configuration (level, slew, threshold, termination)
  • Design fault, error and alarm monitoring
    and response
  • Design configuration control
    plan and procedure
  • Design integration plan (device-level
    and board-level)
  • Initial board power-up plan (proposed
    FPGA minimum functionality)
  • Design testing plan (debug and
    verification)
  • Design block simulation plan


















































       Design Review Topics



  • Identify nets for global
    distribution
  • Detailed clock implementation
    analysis (routing, resources, speeds, distribution, jitter, feed-back paths,
    proposed constraints)
  • Identify critical signals and
    buses into and out of the FPGA
  • Identify and characterize
    high-performance signals (differential signal pairs, board level routing
    concerns, package pin assignment limitations, controlled impedance, guard
    bands, distance from high-noise sources, signal termination architecture)
  • Simultaneous Switching Outputs
    (SSO) consideration
  • Potential device placement and
    orientation
  • Data flow: how will critical
    signals and buses enter and exit the FPGA device and route through the FPGA?
  • I/O placement/selection effects
    on board routing
  • I/O placement/selection effects
    on FPGA signal routing
  • I/O placement/selection
    relationship to I/O banks and SSO considerations
  • I/O characteristics (drive
    strength, differential pairs, placement, I/O mode, slew rate, need for
    assignment to dedicated or special function pin)
  • I/O signal state effect on
    circuitry external to FPGA device before and during configuration and during FPGA
    special conditions such as device reset
  • Need for worst-case simulation
    (process, temperature, etc.)



4.4.2 设计评审



设计评审对FPGA设计过程是非常重要的。评审应该博采众家之长,应该是跨部门的,除硬件和FPGA工程师之外,还应该包括机械设计和软件工程师。需求评审应该详尽彻底,但是不必过于正式。需求评审的目的是确保每个人在设计的最初阶段就清楚设计需求,避免设计后期的返工。下面提供了与设计评审的目的、要素和主题相关的三个概要清单。



设计评审目的清单



  • 向设计团队的全体成员介绍设计需求,讨论自上次的正式设计评审以来的需求更新。
  • 介绍关键的设计需求和困难的设计目标是如何满足的,介绍已评估过的可供替代的实现方案。
  • 评审对于及时发现在将来会变成难题的问题是关键的。缺乏足够时间做准备和进行评审的项目很可能会遇到不必要的延期。






设计评审要素清单



  • 介绍当前的设计状况、设计更新、设计决定,设计结构和需求更新
  • 考虑通过全面的或部分的验证矩阵或表格来介绍关键的设计需求是如何得到满足的。
  • 应该包括设计框图
  • 记录、跟踪和解决评审过程中发现的问题
  • 确定关键的设计问题和挑战(风险)
  • 专注于高风险的电路、功能和接口的实现
  • 介绍关键的有限状态机(FSM
  • 确定会占用全局资源的信号
  • 逐条简介每一个时钟的实现方案
  • 专注于同步时钟实现方式
  • 标出任何不可避免的异步电路,额外关注其功能实现
  • 评审全部的关键设计接口和时钟域边界(跨时钟域信号同步)
  • 高速信号和总线在FPGAI/O模块中是如何得到同步的
  • 介绍功耗和发热估计
  • 介绍机械结构方面的考虑(元件的大小和高度、可能的PCB层数、在可交付的产品外廓上为FPGA配置和测试插头预留的插口、PCB板上为拆卸和重焊预留的器件间隙)
  • 上电复位方案
  • 器件启动顺序和时序,FPGAI/O引脚的上电、配置和复位状态是如何与电路板上的其它器件相互配合的
  • 需要特殊配置的I/O信号(信号电平、上升斜率、门限和端接)
  • 故障、错误和警告的监测和相应的指示
  • 配置管理计划和步骤
  • 集成计划(元器件级和板级)
  • 首次电路板上电计划(在首次上电测试中FPGA需要提供的最小/最基本功能)
  • 设计测试计划(调试和验证)
  • 设计模块仿真计划
















































设计评审主题清单



  • 确认用于全局分布的网络
  • 详细的时钟实现分析(布线结果、全局布线资源的使用情况、速度、分布、抖动、反馈路径和建议的约束)
  • 确认进出FPGA的关键信号和总线
  • 确认和描述高性能信号的特征(差分信号对、板级布线考虑、器件封装对引脚分配的限制、受控阻抗、信号线之间的保护间隔、信号线与高噪声源的距离、信号端接方式)
  • 对同步翻转输出(SSO)产生的影响的考虑
  • 可能的器件摆放位置和方向
  • 数据流:关键的信号和总线是如何进出FPGA器件的,在FPGA内部是如何布线的?
  • I/O的布局位置/位置选取对板级布线的影响
  • I/O的布局位置/位置选取对FPGA内部信号布线的影响
  • I/O的布局位置/位置选取与I/O组选取和SSO影响的关系
  • I/O的特征(驱动强度、差分对、布局、输入输出模式、上升斜率、分配到专用或特殊引脚的需要)
  • 配置加载前、加载过程中和器件复位过程中,I/O信号的状态对FPGA器件外部电路的影响
  • 对最差工作情况进行仿真的需要(加工过程、工作温度等)
PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
我要评论
0
3
关闭 站长推荐上一条 /3 下一条