原创 GDT是什么?陶瓷放电管(GDT)的性能特点及选型运用

2014-4-24 12:02 2648 14 14 分类: 采购与分销

 

GDT是什么?陶瓷放电管(GDT)的性能特点及选型运用

优恩半导体(UN)

1.GDT简介

    陶瓷气体放电管(Gas Tube)是防雷保护设备中应用最广泛的一种开关器件,无论是交直流电源的防雷还是各种信号电路的防雷,都可以用它来将雷电流泄放入大地。其主要特点是:放电电流大,极间电容小(≤3pF),绝缘电阻高(≥100MΩ ),击穿电压分散性较大(±20%),反应速度较慢(最快为0.1~0.2μ s)。按电极数分,有二极放电管和三极放电管(相当于两个二极放电管串联)两种。其外形为圆柱形,有带引线和不带引线两种结构形式(有的还带有过热时短路的保护卡)。

2.GDT工作原理

    气体放电管由封装在充满惰性气体的陶瓷管中相隔一定距离的两个电极组成。其电气性能基本上取决于气体种类、气体压力以及电极距离,中间所充的气体主要是氖或氩, 并保持一定压力,电极表面涂以发射剂以减少电子发射能。这些措施使得动作电压可以调整(一般是70伏到几千伏),而且可以保持在一个确定的误差范围内。当其两端电压低于放电电压时,气体放电管是一个绝缘体(电阻Rohm>100MΩ)。当其两端电压升高到大于放电电压时,产生弧光放电,气体电离放电后由高阻抗转为低阻抗,使其两端电压迅速降低,大约降几十伏。气体放电管受到瞬态高能量冲击时,它能以10-6秒量级的速度,将其两极间的高阻抗变为低阻抗,通过高达数十千安的浪涌电流。

3.GDT特性参数

    直流击穿电压Vsdc:在放电管上施加100V/s的直流电压时的击穿电压值。这是放电管的标称电压,常用的有90、150V、230V、350V、470V、600V、800V等几种,我们有最高5500V、最低70V的。其误差范围:一般为±20%,也有的为±15%。

脉冲(冲击)击穿电压Vsi:在放电管上施加1kV/μ s的脉冲电压时的击穿电压值。因反应速度较慢,脉冲击穿电压要比直流击穿电压高得多。

冲击放电电流Idi:有2.5 kA、5 kA、10 kA、20 kA……等规格。

4.GDT产品性能特点

    优点:

①击穿(导通)前相当于开路,电阻很大,没有漏电流或漏电流很小;

②击穿(导通)后相当于短路,可通过很大的电流,压降很小;

③脉冲通流容量(峰值电流)很大;2.5kA~100kA;

④具有双向对称特性。

⑤电容值很小,小于3pF。

    缺点:

①由于气体电离需要一定的时间,所以响应速度较慢,反应时间一般为0.2~0.3μs(200~300ns),最快也有0.1μs(100ns)左右,在它未导通前,会有一个幅度较大的尖脉冲漏过去,而起不到保护作用。

②击穿电压一致性较差,分散性较大,一般为±20%。

③击穿电压只有几个特定值。

5.GDT的选型

    使用指导:

    在快速脉冲冲击下,陶瓷气体放电管气体电离需要一定的时间(一般为0.2~0.3μ s,最快的也有0.1μ s左右),因而有一个幅度较高的尖脉冲会泄漏到后面去。若要抑制这个尖脉冲,有以下几种方法

a、在放电管上并联电容器或压敏电阻;

b、在放电管后串联电感或留一段长度适当的传输线,使尖脉冲衰减到较低的电平;

c、采用两级保护电路,以放电管作为第一级,以TVS管或半导体过压保护器作为第二级,两级之间用电阻、电感或自恢复保险丝隔离。

直流击穿电压Vsdc的选择:直流击穿电压Vsdc的最小值应大于可能出现的最高电源峰值电压或最高信号电压的可能出现的最高电源峰值电压或最高信号电压的1.2倍以上。

冲击放电电流的选择:要根据线路上可能出现的最大浪涌电流或需要防护的最大浪涌电流选择。放电管冲击放电电流应按标称冲击放电电流(或单次冲击放电电流的一半)来计算陶瓷气体放电管因击穿电压误差较大,一般不作并联使用。

续流问题:为了使放电管在冲击击穿后能正常熄弧,在有可能出现续流的地方(如有源电路中),可以在放电管上串联压敏电阻或自恢复保险丝等限制续流,使它小于放电管的维持电流。

6.GDT的运用领域

    由于GDT脉冲电压高、击穿电压分散性大、响应速率较慢及存在续流问题等特点。使其在使用时避免直接并联在电路上同时常用于二级保护以避免残压过高。其运用包括:AC电源、开关电源、RS485、网卡、电话机、传真机等通讯设备中。一般室外使用在10KA以上,室内一般在5KA左右,终端设备在1KA左右。

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
14
关闭 站长推荐上一条 /3 下一条