原创 设计超低功耗的嵌入式应用(三)

2014-9-23 14:14 825 8 8 分类: 采购与分销

图3给出了可穿戴电子设备的典型方框图。由于存在大量功能块和子系统,设计复杂性进一步提高。
3.jpg 
图3:手表的高层次方框图

显示和触摸控制器部分的功耗主要取决于背光驱动和显示屏本身。大多数设计都针对显示屏采用基于定时器的超时断电模式。一般说来,在固定时间T1后,背光会降至50%的占空比,又过了时间T2后,显示屏会完全关闭。这时即使是触摸控制器也可被关闭或进入断电模式,具体取决于使用情境。这样,设计人员就可绘制这个功能块的电流曲线,进而获得典型电流。
无线控制器(如面向蓝牙的控制器)通常是低功耗的。这种控制器能通过一定方式在高低功耗模式之间切换。
传感器电流主要取决于激励电流和模拟前端(AFE)的功耗。赛普拉斯的PSoC 4等器件拥有ADC等内置模拟功能和其它AFE组件,这就使得设计人员能通过固件命令给不同的功能块动态断电。这种控制和精细粒度级别可进一步提高低功耗设计的效率。
对涉及多控制器和多工作模式的复杂设计而言,在电源电路设计时要注意适应不同的可控电源域。这种架构或许成本会比较高,但却能保持非常低的功耗。
在明确各个子部分后,可采用以下几种方法对每个子部分进行功耗优化:
1. 关闭调节器以关闭整个子部分
2. 将不使用的外设进行断电
3. 使用微控制器的低功耗模式降低平均功耗
实现低功耗的最有效方法就是关闭用于向给定子部分供电的调节器。如果某个特殊的子部分不需要长期可用,其功能不具备时间关键性,那么其调节器自身可被主机控制器控制。传感器就是一个很好的子系统例子,当系统不运行时可将其关闭。唯一消耗的漏电流将会是调节器的电流。
如果不能将整个子部分断电,那么可考虑子部分的各个外设和组件。下面让我们谈谈热敏电阻的激励(见图4)。在本例中,无论是否进行测量,电流都会通过热敏电阻和参考电阻。

4.jpg 
图4:典型的热敏电阻激励电路
现在,如果如图5所示修改热敏电阻电路,那么当传感器不被采样时就能避免电流消耗。

5.jpg 
图5:面向低功耗的热敏电阻激励

在本例中,引脚配置为强输出模式(CMOS逆变器)。要测量传感器输出时就将引脚驱动到低电平。这会使热敏电阻通过NMOS晶体管连接到Vss。唯一需要考虑的额外电阻就是NMOS晶体管的导通电阻,该电阻基本非常低。当不需要测量传感器输出时,则将引脚驱动到高电平。这会使热敏电阻连接到Vdd,从而实现传感器电路上的电流为零。
由于加速计也不需要随时被采样,因此ADC和其它模拟组件(如运算放大器或模拟信号链中的参考生成器)可在不需要检测信号时进行断电。
采用SoC实现此电路时,还有许多其它方法来降低功耗,我们下面将加以介绍。设想一下图3所示的系统,LCD控制器可进入冬眠模式而主机处理器在感应到I2C命令时可将其唤醒。在采用PSoC 4实现电路的情况下,功耗可低至20 nA。
同样,如果传感器子部分用低功耗模式实现且将关闭所有元件,则MCU可在有运动情况下用比较器中断唤醒。加速计输出可连接到比较器,确保只要一有运动就能唤醒器件,并触发主机处理器的事件。
就基于SoC构建的系统而言,还可采用其它技术来降低平均功耗。举例来说,所有外设的时钟都可设定为最慢的时钟频率,由于动态功耗与开关频率成正比,因此这么做就能节约耗电。再举例来说,SoC中的ADC的时钟频率通常应与所需的采样率成正比。如果ADC设置的采样率高于实际的系统需求,那就会造成不必要的电池负载。
还有其它一些系统级技巧可用来降低整体功耗。举例来说,器件输出可支持较低转换率以降低辐射。不过,较低转换率会导致FET的引脚驱动级消耗更多电流,因为PMOS和NMOS都会开启更长的时间。根据系统允许的辐射量,引脚的转换率高低可进行调节设置。
我们选择的器件如果能提供多种电源模式,而且能实现较高集成度,并对SoC的电源状态实现较好控制,这就能简化低功耗系统的实现过程。根据应用的不同,我们可有效利用不同的电源模式来确保较低的平均电流。虽然时钟频率较高会导致高功耗,但CPU暂时高频工作随后能更快地让器件返回休眠状态,这其实有助于实现更低的平均功耗。开发人员应考虑整体系统,尽可能避免出现漏电流路径。(EEChina)

 

 

大家可以关注一下我们集芯城的微信平台,微信号:icjxc520

二维码:微信二维码180.180.jpg
PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
8
关闭 站长推荐上一条 /3 下一条