USB是一种主从结构.USB的数据交换只能发生在主机和设备之间,主机和主机,设备和设备之间不能互连,所有的数据传输都由主机主动发起,而设备只是被动的负责应答。在USB OTG中,一个设备可以在从机和主机之间切换,这样就可以实现设备与设备之间的连接,大大增加了USB的使用范围。但这时依然没有脱离这种主从关系,两个设备之间必然有一个作为主机,另一个作为从机。USB OTG增加了一种MINI USB接头,比普通的4线USB多了一个ID表识线,用来表明它是主机还是设备.<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />
为了防止出现长时间的0或者1(这样不利于时钟信号的提取),在发送数据前要经过位填充处理。然后再将数据串行化,发送到数据线上,由两根数据线的差分值来表示0或者1。而在接收端,则刚好是相反的过程。接收端采样数据线,将数据并行化,并同时去掉未填充,然后解析数据。
在设备接收数据时,芯片的串行接口引擎(SIE)会接收属于自己地址的数据,并根据相应的端口号,放到相应的缓冲区内,并返回ACK给主机进行确认,然后产生中断请求,通知我们的程序,已经收到数据包了。在我们还未处理完缓冲区的数据之前,如果再收到对该端点的输出请求,USB芯片将会使用NAK返回,告诉主机端点现在忙,主机检测到NAK后,过段时间会重试输出数据,直到超时为止;发送数据时,用户将数据写入USB芯片的缓冲区,并通知USB芯片缓冲区内数据可用,然后USB芯片检测到主机请求对应的端点输入时,它就会将数据返回,数据发送完毕并收到主机的ACK确认之后,产生中断请求通知应用程序数据已经发送完毕。如果USB芯片已经收到了输入请求,但是用户程序还未填充好缓冲区,它也会用NAK返回,告诉主机数据还未准备好。主机收到NAK后,过段时间会重试,直到超时为止。
USB主机是如何检测到设备的插入的呢?首先,在USB集线器的每个下游端口的D+和D-上,分别接了一个15K欧姆的下拉电阻到地。这样,在集线器的端口悬空时,就被这两个下拉电阻拉到了低电平。而在USB设备端,在D+或者D-上接了1.5K欧姆上拉电阻。对于全速和高速设备,上拉电阻是接在D+上;而低速设备则是上拉电阻接在D-上。这样,当设备插入到集线器时,由1.5K的上拉电阻和15K的下拉电阻分压,结果就将差分数据线中的一条拉高了。集线器检测到这个状态后,它就报告给USB主控制器(或者通过它上一层的集线器报告给USB主控制器),这样就检测到设备的插入了。USB高速设备先是被识别为全速设备,然后通过HOST和DEVICE两者之间的确认,再切换到高速模式的。在高速模式下,是电流传输模式,这时将D+上的上拉电阻断开。
USB主机在检测到USB设备插入后,就要对设备进行枚举了。为什么要枚举呢?枚举就是从设备读取一些信息,知道设备是什么样的设备,如何进行通信,这样主机就可以根据这些信息来加载合适的驱动程序。在设备的枚举过程中都是使用控制传输。控制传输分为三个过程:①建立过程。②可选的数据过程。③状态过程。建立(Setup)过程都是由USB主机发起,它开始于一个Setup令牌包,后面紧跟一个DATA0包。如果是控制输入传输,那么数据过程就是输入数据;如果是控制输出传输,那么数据过程是输出数据。如果在设置过程中,指定了数据长度为0,则没有数据过程。数据过程之后是状态过程。状态过程刚好与数据过程的数据传输方向相反:如果是控制输入传输,则状态过程是一个输出数据包;如果是控制输出传输,则状态过程是一个输入数据包。状态阶段用来确认所有的数据都已经正确传输。
枚举的详细过程。
首先,USB主机检测到USB设备插入后,就会先对设备复位。设备复位后,USB主机就会对地址为0的设备发送获取设备描述符的标准请求。所有的USB设备在总线复位后其地址都为0,这样主机就可以跟那些刚刚插入的设备通过地址0通信。主机在建立阶段发出获取设备描述符的输入请求,设备收到该请求后,在数据过程将设备描述符返回给主机。主机在成功获取到一个数据包的设备描述符后并且确认没有什么错误后(注意:有些USB设备的端点0大小不足18字节(但至少具有8字节),而标准的设备描述有18字节,在这种情况下,USB设备只能暂时按最大包将部分设备描述符返回,而主机在成功获取到前面一部分描述符后,就不会再请求剩下的设备描述符部分,而是进入设置地址阶段),
就会返回一个0长度的状态数据包给设备。
然后主机再对设备复位一下,接下来就会进入到设置地址阶段。这时USB主机发出一个设置地址的请求(建立过程,设置地址无数据过程),地址包含在建立包中,具体的地址USB主机会负责管理,它会分配一个唯一的地址给新的设备。USB设备在收到地址后,返回0长度的状态包,主机收到0长度的状态包之后,会返回一个ACK给设备。设备在收到这个ACK之后,就可以启用新的地址了。这样设备就分配到了一个唯一的设备地址,以后主机就通过它来进行访问该设备。
然后主机再次获取设备描述符,这次跟第一次可能有点不一样,这次需要获取完全部的18个字节的设备描述符。当然,如果你的端点0缓冲大于18字节的话,那就跟第一次的情形一样了。
接下来,主机就会获取配置描述符。配置描述符总共为9字节。主机在获取到配置描述符后,根据里面的配置集合总长度,再获取配置集合。配置集合包括配置描述符,接口描述符,端点描符等等。
如果有字符串描述符的话,还要获取字符串描述符。另外HID设备还有HID描述符等。使用BUS HOUND以及通过串口返回信息,很容易看到具体的过程。总之是主机请求什么,你的程序就响应什么。
USB是个通用的总线,端口都是统一的。但是USB设备却各种各样,例如USB鼠标,USB键盘,U盘等等,那么USB主机是如何识别出不同的设备的呢?这就要依赖于描述符了。USB的描述符主要有设备描述符,配置描述符,接口描述符,端点描述符,字符串描述符,HID描述符,报告描述符等等。
一个USB设备有一个设备描述符,设备描述符里面决定了该设备有多少种配置,每种配置描述符对应着配置描述符;而在配置描述符中又定义了该配置里面有多少个接口,每个接口有对应的接口描述符;在接口描述符里面又定义了该接口有多少个端点,每个端点对应一个端点描述符;端点描述符定义了端点的大小,类型等等。由此我们可以看出,USB的描述符之间的关系是一层一层的,最上一层是设备描述符,下面是配置描述符,再下面是接口描述符,再下面是端点描述符。在获取描述符时,先获取设备描述符,然后再获取配置描述符,根据配置描述符中的配置集合长度,一次将配置描述符、接口描述符、端点描述符一起一次读回。其中可能还会有获取设备序列号,厂商字符串,产品字符串等。
文章评论(0条评论)
登录后参与讨论