原创 STM32学习日志(22)----使用DMA功能自动更新PWM的输出

2011-4-19 10:37 11755 8 10 分类: MCU/ 嵌入式

attachment download


/*******************************************************************************
编译环境: EWARM V5.30
硬件环境: DZY2.PCB
STM32 FW:   V3.0.0
作者 : szlihongtao
******************************************************************************
REV  : V1.00
DATE : 2011-04-18
NOTE : 
*******************************************************************************/
#include "stm32f10x.h"
#include "stm32_m.h"
#include "dzy.h"  
#include "myRCC.h"  
//******************************************************************************
#define TIM1_CCR3_Address    0x40012C3C


bit f_tb;    // 基本定时标志
bit f_100ms,f_1000ms;   
INT16U cnt_test;  // 计数器,仅供软件调试使用
float clk_sys;   // 仅供软件调试使用
#if 1
uint16_t SRC_Buffer[]={72*5};// 由于载波频率取20kHZ,所以最大脉冲宽度不要超50us,即常数不要超过72*50
#else
uint16_t SRC_Buffer[]={72*2,72*5,72*10,72*20,72*40,72*10};// 由于载波频率取20kHZ,所以最大脉冲宽度不要超50us,即常数不要超过72*50
#endif
//******************************************************************************
// 延时程序,单位为*1ms
//******************************************************************************
void delayms(INT16U cnt)
{
//#define   CONST_1MS  7333   // 72MhZ
//#define   CONST_1MS 3588   // 32MhZ
#define   CONST_1MS (105*FCLK)
       
 INT16U i;


   __no_operation();
 while(cnt--)
  for (i=0; i<CONST_1MS; i++);
}
//******************************************************************************
// pcb上的指示灯
//******************************************************************************
static void led_toggle(void)
{
 GPIOC->ODR ^= GPIO_Pin_7;  // led2 toogle
 GPIOC->ODR ^= GPIO_Pin_6;  // led3 toogle
}
//******************************************************************************
// 时钟设置初始化
//******************************************************************************
static void RCC_Configuration(void)
{
  ErrorStatus HSEStartUpStatus;
/*
RCC_AdjustHSICalibrationValue 调整内部高速晶振(HSI)校准值
RCC_ITConfig 使能或者失能指定的RCC中断
RCC_ClearFlag 清除RCC的复位标志位
RCC_GetITStatus 检查指定的RCC中断发生与否
RCC_ClearITPendingBit 清除RCC的中断待处理位
*/
   /* RCC system reset(for debug purpose) */
   // 时钟系统复位
   RCC_DeInit();


 // 使能外部的8M晶振
 // 设置外部高速晶振(HSE)
   /* Enable HSE */
   RCC_HSEConfig(RCC_HSE_ON);


 // 使能或者失能内部高速晶振(HSI)
 RCC_HSICmd(DISABLE);


 // 等待HSE起振
 // 该函数将等待直到HSE就绪,或者在超时的情况下退出
   /* Wait till HSE is ready */
   HSEStartUpStatus = RCC_WaitForHSEStartUp();


   if(HSEStartUpStatus == SUCCESS)
   {
  // 设置AHB时钟(HCLK)
     RCC_HCLKConfig(RCC_HCLK_Div_); // 36 MHz


  // 设置低速AHB时钟(PCLK1)
     RCC_PCLK1Config(RCC_PCLK1_Div_); // 2.25 MHz


  // 设置高速AHB时钟(PCLK2)
     RCC_PCLK2Config(RCC_PCLK2_Div_); // 2.25 MHz


     /* ADCCLK = PCLK2/8 */
  // 设置ADC时钟(ADCCLK)
     RCC_ADCCLKConfig(RCC_ADC_DIV_); // 0.281Mhz


  // 设置USB时钟(USBCLK)
  // USB时钟 = PLL时钟除以1.5
  //RCC_USBCLKConfig(RCC_USBCLKSource_PLLCLK_1Div5);


  // 设置外部低速晶振(LSE)
  RCC_LSEConfig(RCC_LSE_OFF);


  // 使能或者失能内部低速晶振(LSI)
  // LSE晶振OFF
  RCC_LSICmd(DISABLE);


  // 设置RTC时钟(RTCCLK)
  // 选择HSE时钟频率除以128作为RTC时钟
  //RCC_RTCCLKConfig(RCC_RTCCLKSource_HSE_Div128);


  // 使能或者失能RTC时钟
  // RTC时钟的新状态
  RCC_RTCCLKCmd(DISABLE);


     /* Flash 2 wait state */
     FLASH_SetLatency(FLASH_Latency_2);


     /* Enable Prefetch Buffer */
     FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);


     /* PLLCLK = 8MHz * 9 = 72 MHz */
  // 设置PLL时钟源及倍频系数
     RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_);
  
     /* Enable PLL */
  // 使能或者失能PLL
     RCC_PLLCmd(ENABLE);


     /* Wait till PLL is ready */
  // 检查指定的RCC标志位设置与否
     while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
     {
     }


     /* Select PLL as system clock source */
  // 设置系统时钟(SYSCLK)
     RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);


     /* Wait till PLL is used as system clock source */
  // 返回用作系统时钟的时钟源
     while(RCC_GetSYSCLKSource() != 0x08)
     {
     }
  }


 // 使能或者失能AHB外设时钟
 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1
       |RCC_AHBPeriph_DMA2
       |RCC_AHBPeriph_SRAM
       |RCC_AHBPeriph_FLITF
       |RCC_AHBPeriph_CRC
       |RCC_AHBPeriph_FSMC
       |RCC_AHBPeriph_SDIO,DISABLE);
 // 使能或者失能APB1外设时钟
 RCC_APB1PeriphClockCmd(RCC_APB1Periph_ALL,DISABLE);


 // 强制或者释放高速APB(APB2)外设复位
 RCC_APB2PeriphResetCmd(RCC_APB2Periph_ALL,ENABLE);
 // 退出复位状态
 RCC_APB2PeriphResetCmd(RCC_APB2Periph_ALL,DISABLE);


 // 强制或者释放低速APB(APB1)外设复位
 RCC_APB1PeriphResetCmd(RCC_APB1Periph_ALL,ENABLE);


 // 强制或者释放后备域复位
 RCC_BackupResetCmd(ENABLE);


 // 使能或者失能时钟安全系统
 RCC_ClockSecuritySystemCmd(DISABLE);
}
//******************************************************************************
// NVIC设置
//******************************************************************************
void NVIC_Configuration(void)
{
 NVIC_InitTypeDef  NVIC_InitStructure;


   /* Configure one bit for preemption priority */
   NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);


 NVIC_InitStructure.NVIC_IRQChannel=TIM1_UP_IRQn;
   NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
   NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
   NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
   //NVIC_Init(&NVIC_InitStructure);


 NVIC_InitStructure.NVIC_IRQChannel=TIM1_CC_IRQn;
   NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
   NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
   NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
   //NVIC_Init(&NVIC_InitStructure);
 
 NVIC_InitStructure.NVIC_IRQChannel=DMA1_Channel5_IRQn;
   NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
   NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
   NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
   NVIC_Init(&NVIC_InitStructure);
}
//******************************************************************************
// SysTick设置初始化
//******************************************************************************
static void SysTick_Config1(void)
{
#if 1
 #define SystemFreq  (FCLK*1000000.0)    // 单位为Hz
 #define TB_SysTick  (TIME_TB*1000)  // 单位为uS,与示波器实测一致


 static INT32U ticks;


 ticks=(INT32U)((TB_SysTick/1000000.0)*SystemFreq);
 SysTick_Config(ticks);
#endif 
}
//******************************************************************************
// GPIO设置
//******************************************************************************
static void GPIO_Configuration(void)
{
 GPIO_InitTypeDef GPIO_InitStructure;


  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA
       |RCC_APB2Periph_GPIOB
       |RCC_APB2Periph_GPIOC
       |RCC_APB2Periph_GPIOD
       |RCC_APB2Periph_AFIO, ENABLE);


//------------------------------------------------------------------------------
    GPIO_Write(GPIOA,0xffff); 
   
     /* GPIOA Configuration: Channel 3 as alternate function push-pull */
    GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_10;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);


    GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_10;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
   // GPIO_Init(GPIOA, &GPIO_InitStructure);
 
    GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_11;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
    GPIO_Init(GPIOA, &GPIO_InitStructure);
//------------------------------------------------------------------------------


    GPIO_Write(GPIOB,0xffff); // 11111101-11111111    
   
     /* GPIOB Configuration: Channel 3N as alternate function push-pull */
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
    GPIO_Init(GPIOB, &GPIO_InitStructure);
 //------------------------------------------------------------------------------
 
 GPIO_Write(GPIOC,0xff0f); // 11111111-00001111


   GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7|GPIO_Pin_6|GPIO_Pin_4|GPIO_Pin_5;
   GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
   GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
   GPIO_Init(GPIOC, &GPIO_InitStructure);
//------------------------------------------------------------------------------
 GPIO_Write(GPIOD,0xffff); // 11111111-11111111  


   GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3|GPIO_Pin_2;
   GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
   GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
   GPIO_Init(GPIOD, &GPIO_InitStructure);
}
//******************************************************************************
void DMA_Configuration(void)
{
 DMA_InitTypeDef DMA_InitStructure;


 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1,ENABLE);  // dma1时钟使能
 
 DMA_DeInit(DMA1_Channel5);   // DMA复位
 DMA_StructInit(&DMA_InitStructure);// DMA缺省的参数


   DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)TIM1_CCR3_Address;  //外设地址
   DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)SRC_Buffer;//内存地址
   DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; //dma传输方向,单向
   DMA_InitStructure.DMA_BufferSize = sizeof(SRC_Buffer)/2;  //设置DMA在传输时缓冲区的长度
   DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//设置DMA的外设递增模式,一个外设
   DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;//设置DMA的内存递增模式,
   DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord; //外设数据字长
   DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;   //内存数据字长
 //循环模式开启,Buffer写满后,自动回到初始地址开始传输
 DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;  //设置DMA的传输模式
  DMA_InitStructure.DMA_Priority = DMA_Priority_High; //设置DMA的优先级别
   DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;  //设置DMA的2个memory中的变量互相访问
   DMA_Init(DMA1_Channel5, &DMA_InitStructure);


 DMA_ClearFlag(DMA1_IT_TC5);
 DMA_ITConfig(DMA1_Channel5, DMA_IT_TC, ENABLE);


   DMA_Cmd(DMA1_Channel5, ENABLE);
}
 
/* TIM1 DMA Transfer example -------------------------------------------------
  TIM1CLK = 72 MHz, Prescaler = 0, TIM1 counter clock = 72 MHz
  The TIM1 Channel3 is configured to generate a complementary PWM signal with
  a frequency equal to: TIM1 counter clock / (TIM1_Period + 1) = 17.57 KHz and
  a variable duty cycle that is changed by the DMA after a specific number of
  Update DMA request.
  The number of this repetitive requests is defined by the TIM1 Repetion counter,
  each 3 Update Requests, the TIM1 Channel 3 Duty Cycle changes to the next new
  value defined by the SRC_Buffer .
  -----------------------------------------------------------------------------*/
//******************************************************************************
void Tim1_Configuration(void)
{
 INT16U TIM_Prescaler,TIM_Period;
 INT32U utemp;
 TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
    TIM_OCInitTypeDef TIM_OCInitStructure;
 
 RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);
 
 TIM_DeInit(TIM1);         
         
 utemp=(INT32U)(TIM1CLK*1000000.0)/Freq_PWM;


 TIM_Prescaler=utemp/65536;
 ++TIM_Prescaler;                       // 注意这句话,一定要++
 
 utemp=(INT32U)(TIM1CLK*1000000.0)/TIM_Prescaler;  // 分频后的定时器输入频率
 TIM_Period=utemp/Freq_PWM;               // 周期常数
 
    TIM_TimeBaseStructure.TIM_Period = TIM_Period-1;
  TIM_TimeBaseStructure.TIM_Prescaler = TIM_Prescaler-1;
   TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
   TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseStructure.TIM_RepetitionCounter = 1-1;// 每次直接更新
   TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
//------------------------------------------------------------------------------
 /* PWM1 Mode configuration: Channel1 */  
   TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
   TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; // 使能输出比较状态
   TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable; // 失能输出比较N状态
   TIM_OCInitStructure.TIM_Pulse = 72;         
/*          
 TIM_OCMode_PWM2  TIM_OCPolarity_Low    正脉冲模式
 TIM_OCMode_PWM2  TIM_OCPolarity_High   负脉冲模式


 TIM_OCMode_PWM1  TIM_OCPolarity_Low    负脉冲模式
 TIM_OCMode_PWM1  TIM_OCPolarity_High   正脉冲模式


 TIM1_OCPolarity输出极性---TIM_OCPolarity_High,输出比较极性高,输出的是正脉冲
 TIM1_OCPolarity输出极性---TIM_OCPolarity_Low, 输出比较极性低,输出的是负脉冲
*/
   TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
   TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low; // 互补输出极性
   // 选择空闲状态下的非工作状态
   // 当MOE=0设置TIM1输出比较空闲状态      
   // 默认输出位低电平               
   TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;
   // 选择空闲状态下的非工作状态
   // 当MOE=0重置TIM1输出比较N空闲状态
   TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
   TIM_OC3Init(TIM1, &TIM_OCInitStructure);
   TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);// 使能TIMx在CCR1上的预装载寄存器


      /* TIM1 Update DMA Request enable */        
    TIM_DMACmd(TIM1, TIM_DMA_Update, ENABLE);


    //TIM_ITConfig(TIM1,TIM_IT_Update,ENABLE); // 定时中断使能
    //TIM_ITConfig(TIM1,TIM_IT_CC3,ENABLE); // 定时中断使能
    TIM_Cmd(TIM1, ENABLE);      // 定时器开始运行
                
 // 这条语句必须要有!!!
 TIM_CtrlPWMOutputs(TIM1, ENABLE);   /* Main Output Enable */   
}
//******************************************************************************
// 基本定时程序,周期为 TIME_TB
//******************************************************************************
static func_tb(void)
{
 static INT16U tmr_100ms;
 static INT16U tmr_1000ms;
 
 if (!f_tb)                         
  return;
 f_tb=0;
   
 if (++tmr_100ms>=(100/TIME_TB))
 {
  tmr_100ms=0;
  f_100ms=1;    
     
     GPIOC->ODR ^= GPIO_Pin_4;  // led5 toogle         
 }
 if (++tmr_1000ms>=(1000/TIME_TB))
 {
  tmr_1000ms=0;
  f_1000ms=1;
     GPIOC->ODR ^= GPIO_Pin_5;  // led4 toogle     
 } 
}


//******************************************************************************
// 进入睡眠模式
// 自行编写
//******************************************************************************
void myPWR_EnterSleepMode(void)
{
   //PWR->CR |= CR_CWUF_Set; /* Clear Wake-up flag */


   /* Set SLEEPDEEP bit of Cortex System Control Register */
   //*(__IO uint32_t *) SCB_SysCtrl |= SysCtrl_SLEEPDEEP_Set;
 /* This option is used to ensure that store operations are completed */


 __WFI();   /* Request Wait For Interrupt */
}
//******************************************************************************
// 主程序
//******************************************************************************
void main(void)
{        
    int i;
   
  RCC_Configuration();   
   GPIO_Configuration();
 delayms(100);   // 延时,等待电压稳定
 Tim1_Configuration();    
 DMA_Configuration();
   SysTick_Config1();
  NVIC_Configuration(); 
//------------------------------------------------------------------------------
    for(i=0;i<6;++i)
 {
  //i=0;
  //GPIOA->ODR ^= GPIO_Pin_10;  // led3 toogle
  //GPIOA->ODR ^= GPIO_Pin_11;  // led3 toogle
 
  delayms(1); 
        led_toggle();  
    }
//------------------------------------------------------------------------------  
 for(;;)
 {  
  //if (set_sw&0x01)
   //myPWR_EnterSleepMode(); // 休眠,降低功耗


  func_tb();
    }
}
//******************************************************************************
#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *   where the assert_param error has occurred.
  * @param file: pointer to the source file name
  * @param line: assert_param error line source number
  * @retval : None
  */
void assert_failed(uint8_t* file, uint32_t line)
{
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */


  /* Infinite loop */
  while (1)
  {
  }
}
#endif
//******************************************************************************
/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/
//******************************************************************************


/*
 LED2---------PC7
 LED3---------PC6
 LED4---------PC5
 LED5---------PC4


 KEY2---------PD3
 KEY3---------PD4


@par Example Description


This example provides a description of how to use DMA with TIM1 Update request
to transfer Data from memory to TIM1 Capture Compare Register3.


TIM1CLK = 72 MHz, Prescaler = 0, TIM1 counter clock = 72 MHz
The TIM1 Channel3 is configured to generate a complementary PWM signal with
a frequency equal to: TIM1 counter clock / (TIM1_Period + 1) = 17.57 KHz


The TIM1 Channel3 is configured to generate a complementary PWM signal with
a frequency equal to 17.578 KHz and a variable duty cycle that is changed
by the DMA after a specific number of Update event.
The number of this repetitive requests is defined by the TIM1 Repetion counter,
each 3 Update Requests, the TIM1 Channel3 Duty Cycle changes to the next new value
defined by the SRC_Buffer.


  - STM3210E-EVAL and STM3210B-EVAL Set-up
    - Connect the following pins to an oscilloscope to monitor the different waveforms: 
        - TIM1 CH3  (PA.10)   pin69
        - TIM1 CH3N (PB.15)   pin54
*/


 


 


 


 


 


 


 

PARTNER CONTENT

文章评论2条评论)

登录后参与讨论

用户1588460 2015-5-26 16:52

学习了。。。。

用户404824 2012-6-29 16:31

good.
相关推荐阅读
sz_lihongtao 2011-04-20 21:32
32bit无符号数快速开平方根
//*******************************************************************************// 32bit无符号数开平方根// ...
sz_lihongtao 2011-04-20 12:12
STM32学习日志(24)----使用dsp库的FFT函数测相位
attachment download/**  ****************************************************************************...
sz_lihongtao 2011-04-19 14:57
STM32学习日志(23)----使用dsp库的FFT函数.rar
attachment download/**  ****************************************************************************...
sz_lihongtao 2011-04-19 10:39
stm32 dsp lib V2.0
attachment downloadattachment download...
sz_lihongtao 2010-09-08 21:59
Labwindows/cvi8.5学习日志(56)----任意波形发生器
//******************************************************************************// Labwindows/cvi8.5...
我要评论
2
8
关闭 站长推荐上一条 /3 下一条