原创 结合共模电感与差模电感的磁混成,快速解决传导型EMI

2020-7-23 08:41 4809 33 3 分类: 模拟
利用混成式共模电感抑制传导电磁干扰

摘要

EMI抑制方案有许多组合,包括滤波器组合、变压器绕线安排,甚至PCB布局。本文提供一种结合共模电感与差模电感的磁混成,称之为混成式共模电感器。不仅保留共模电感的高阻抗特性,同时利用其很高漏电感当成差模电感用。不仅可以缩小体积节省滤波器成本,更提供了工程师快速解决传导型EMI 问题的方法。


混成式共模电感的原理与功能

在常规单级EMI 滤波器电路中,如图一,有共模噪声滤波器 (LCM、CY1与CY2) 与差模噪声滤波器 (LDM、CX1与CX2) 分别形成”LC滤波器”衰减共模与差模噪声。共模电感通常以高导磁锰锌 (Mn-Zn) 铁氧体 (Ferrite) 制成,电感值可达1~50mH。共模电感器,如图二,由于绕线极性安排,虽然两组线圈分别流过负载电流,但铁芯内部磁力线互相抵消,一般不存在铁芯饱和的问题。常用的铁芯有环型 (Toroidal)、UU型 (UU-9.8、UU-10.5等)、ET型与UT型,如图三。为了获得足够的共模电感值,要尽量让两组线圈的耦合达到最好,所以多采用施工成本较高的环型或一体成型的ET与UT 铁芯。

Technical Document Image Preview

图一、常规EMI滤波器结构

Technical Document Image Preview

图二、共模电感器

Technical Document Image Preview

图三、共模滤波器(a)环型(b)ET型(c)UU型(d)UT型

从共模电感的工作原理与等效电路来看,如图四所示,双绕组的共模电感虽然有很好的耦合,但是还是存在漏电感,漏电感就是由漏磁通造成。这个漏电感在等效上串联在电路上,功能上与差模电感无异。所以可以说,共模电感器的漏电感可以利用来做为差模滤波器。然而如图三所示的共模电感器,由于机械结构的关系,其漏电感都很小,约莫在数mH到100mH。如果要得到更大的漏电感,只有增加匝数一途,如此一来,线径变细,电流耐受降低。要改善只有增加铁芯尺寸,当然也增加了滤波器的体积与成本。许多要求极高共模电感的应用,其实不在滤除共模噪声,而是要得到较大的漏电感当差模滤波器用,只是许多工程师不甚清楚罢了。

Technical Document Image Preview

图四、共模电感器的等效模型

为了增加共模电感的漏电感,特殊的铁芯结构与绕线方法称为混成式共模电感器 (Integrated Common-mode Choke) 或者称混成共模电感器 (Hybrid Common-mode Choke),如图五所示。这样的结构,不仅可以保留共模电感量以充分滤除共模噪声,而且其漏电感形成的差模电感可以高达数百mH,配合适当的X电容,可以有效的滤除中低频段 (150kHz~3MHz) 的差模

信号。实验证明混成式共模电感器不仅具有很好的滤波特性,低成本与小体积更是最大的优点。

Technical Document Image Preview

图五、立式与卧式混成式共模电感器



主要的电气参数

混成式共模电感器除保留了常规的共模电感器的规格外,还兼具差模电感的特性。一般除了用共模与差模电感量标示外,还要以以下参数来规范。

(1)共模阻抗 (Common-mode Impedance, ZCM) : 相较于电源阻抗稳定网络 (Line Impedance Stabilization Network, LISN)的高频等效电阻 (共模为25W),滤波用的共模阻抗越大越好。除了铁芯材质外,绕线的方法(槽数)更影响高频阻抗的高低。图六为共模阻抗的量测法,图七为ASU-1200系列共模阻抗特性图。由于绕线的层间杂散电容 (Stray Capacitance, CS) 存在,高频时将变为电容性;CS越小越好。

Technical Document Image Preview

图六、共模阻抗量测

Technical Document Image Preview

图七、ASU-1200系列共模阻抗特性图

(2)共模电感 (Common-mode Inductance, LCM) : 传统上,习惯以外加测试电压 (VOSC)与频率来规范共模电感。依铁芯材料特色,共模电感以VOSC = 1Vac @100kHz 量测较为稳定。

(3)差模阻抗 (Differential-mode Impedance, ZDM) : 同样的,量测等效差模阻抗的方法如图八所示,用差模阻抗特性图 (如图九)来定义差模滤波的效能;相较于LISN 的等效电阻100W,差模阻抗也是越大越好。当然高频时一样会变成电容性,但只要阻抗够大,一样有滤波的效果。

Technical Document Image Preview

图八、差模阻抗量测

Technical Document Image Preview

图九、ASU-1200系列差模阻抗特性图

(4)差模电感 (Differential-mode Inductance, LDM) : 差模电感一样可以VOSC = 1Vac @100kHz 来规范。在实用上,混成式差模电感量必须在100mH 以上,配合X电容,才能有效的滤除差模噪声。

(5)差模饱和电流 (Isat) : 如前所述,因为等效差模电感必须流过负载电流,在负载电流的峰值下,差模电感不能饱和,否则其滤除噪声的能力将降低。图十为一般桥式整流滤波电路的输入电流波形。必须确保在最大电流峰值下,差模电感量没有因饱和而下降。传统上,以电感值衰减20% (相对于没有直流偏置) 为其差模饱和电流。

Technical Document Image Preview

(a)

Technical Document Image Preview

(b)

图十、(a) 全桥滤波电路 (b) 输入电流波形

(6)有效承受电流(Irms) : 等效上就是规范线径粗细。虽然如图十的输入电流波形,但其有效值并不高,一般可以两倍的输出功率除以最低输入电压估计。例如全电压范围25W 的电源适配器,输入电流的有效值约为 2*25W/90Vac = 0.55A。

表一为ASU-1200 系列的电气参数表


LCM(mH)

±20%

LDM(mH)

±10%

Isat(A)

Irms(A)

ASU-1201

4.0

143

3.2

1.00

ASU-1202

6.0

220

2.9

0.80

ASU-1203

9.0

310

2.4

0.75

ASU-1204

12.0

410

2.2

0.75

ASU-1205

16.0

530

1.9

0.60

ASU-1206

20.0

670

1.8

0.55



应用电路

混成式共模电感器,简单说就是一个传统共模电感与一个(或两个)差模电感的混成。在应用上,EMI工程师必须选定需要的共模电感、差模电感以及相关的差模饱和电流与承受电流。ASU-1200 系列混成式共模电感适合应用在25W到50W的Flyback 电路或120W以下PFC 电路。图十一为两种应用混成式共模电感器的Flyback 电路。

Technical Document Image Preview

(a)

Technical Document Image Preview

(b)

图十一、两种应用混成式共模电感器的Flyback 电路 (a) 常规位置搭配X电容 (b) 置于桥整后与电解电容形成P型滤波器

图十二为应用在临界导通模式 (Boundary Conduction Mode) 主动功因改善 (PFC) 电路的滤波器。

Technical Document Image Preview

图十二、应用于PFC电路的混成共模电感器

图十三到图十五为应用ASU-1203混成式共模电感器在一个24W (12V/2A) 的离线式Flyback 电源中EMI 的表现。明显地可以看出这种共模电感不只有效的衰减共模噪声,同时其差模电感也大量的衰减差模噪声。整体而言,装有ASU-1203 的EMI 表现,在中低频段约有30dB的衰减。

Technical Document Image Preview

图十三、共模噪声衰减 (蓝色曲线为装有ASU-1203 的共模噪声量测图)

Technical Document Image Preview

图十五、总噪声衰减 (蓝色曲线为装有ASU-1203 的总噪声量测图)

Technical Document Image Preview

图十四、差模噪声衰减 (蓝色曲线为装有ASU-1203 的差模噪声量测图)


来源:立锜科技电子报

文章评论0条评论)

登录后参与讨论
我要评论
0
33
关闭 站长推荐上一条 /2 下一条