目前商业化的碲化铋基热电材料的帕尔帖效应最为明显,即电子能级跳跃的更高,相应的制冷效率更高。在全世界范围内,普遍商业化的半导体制冷片还是碲化铋基为主(以碲化铋为基材,做不同的掺杂形成P级和N级)。
基于以上物理效应,微型制冷片是为小尺寸和大电压输入应用而特别设计的,采用高强度碲化铋热电材料和高导热高绝缘陶瓷基板组装而成,适合于高电压、低电流、小尺寸的应用场合。目前,微型半导体制冷片的技术正在不断发展,其应用前景也非常广阔。微型制冷片的工艺要求非常高,主要包括以下几个方面:
1.材料选择:微型制冷片的材料需要满足制冷性能、可靠性、机械强度、耐腐蚀性等多方面的要求。微型制冷片的封装基板材料对其性能和稳定性有着重要的影响,目前常用的封装基板材料主要包括氧化铝陶瓷、氮化铝陶瓷等。而氮化铝陶瓷基板由于其具有以下优点,因此被广泛地用于微型制冷片的制备中:a.热导率高:氮化铝陶瓷具有较高的热导率,可以更有效地散热,从而提高微型制冷片的制冷效率。b.热膨胀系数低:氮化铝陶瓷的热膨胀系数比氧化铝低,因此更适合与制冷芯片进行配合,可以有效减小由于热膨胀系数不匹配导致的热应力和热裂纹的问题。c.化学稳定性好:氮化铝陶瓷具有良好的化学稳定性,可以耐受多种酸、碱和有机溶剂等化学介质的腐蚀,从而延长微型制冷片的使用寿命。d.机械强度高:氮化铝陶瓷的机械强度和硬度高,不易发生破裂和变形等问题,可以保证微型制冷片的稳定性和可靠性。
2.制备工艺:微型制冷片的制备需要采用微纳加工技术,如光刻、薄膜沉积、离子注入等。同时需要保证加工的精度和一致性,以及降低工艺中产生的缺陷和污染。斯利通陶瓷在生产工艺中采用先进光刻胶膜,通过高精度曝光机对位显影,可实现线路对位精度控制在±10um,线路线宽线距公差控制在10%。
3.封装技术:微型制冷片的封装需要保证其稳定性和可靠性,同时也需要考虑散热问题。常见的封装材料包括环氧树脂、硅胶等。为了避免制冷性能的降低以及对制冷材料可能引起的电化学腐蚀,热电制冷器需要隔绝潮气。当温度降低到露点以下时,为了避免水汽渗入制冷器内部,应该安装有效的防潮密封保护。这层防潮保护层应该围绕着热电制冷器安装在散热片和被冷却物体之间。电子级RTV硅胶可以直接用作热电制冷器的防潮保护层。使用可变形的闭孔泡沫绝缘胶带或薄片材料,适当的结合RTV来填充空隙,就可以用来在被冷却物体和散热器之间形成保护层。
4.测试技术:对微型制冷片的测试需要使用高精度的测试设备和技术,如电学测试、热学测试等。热电制冷器的失效一般分为两种:早期失效和性能衰减。性能衰减一般是在长期使用之后由于半导体材料性能参数的变化或者接触电阻的增加所引起的。长期在高温下使用会引起半导体材料性能参数的变化从而降低制冷器的制冷性能。将热电制冷器在很宽的温度范围内进行持续的冷热循环,可以看成是对制冷器进行可靠性测试,特别是在循环过程中将制冷器的热端温度升高到很高的温度。这种失效一般表现为早期失效,而有时也会在失效之前观察到性能衰减。
总之,微型制冷片的制备需要高度精密和专业的加工和封装技术,并需要多种测试手段来保证其质量和性能。其中选择和优化制冷材料是关键因素之一。可以从以下方法着手A.选择合适的材料:半导体材料的热电性能与其化学成分、晶体结构、掺杂浓度和载流子迁移率等因素有关。通常选择热电性能好、稳定性高、成本低廉的材料。B.控制晶格缺陷:晶格缺陷会对材料的电子输运和热电性能产生负面影响。因此,需要对材料进行掺杂和表面处理等方法,以控制晶格缺陷。C.提高载流子迁移率:载流子迁移率是影响半导体材料热电性能的关键因素之一。通过控制掺杂浓度和晶格结构等方法,可以提高载流子迁移率。D.优化热电模块结构:热电模块结构的优化可以改善半导体材料的热电性能。例如,通过优化电极结构和电场分布等方法,可以提高热电模块的制冷效率。E.利用纳米材料:纳米材料具有较高的表面积和体积比,可以提高热电材料的能力。因此,利用纳米材料来制备半导体材料可以提高其热电性能。
由于微型制冷片具有体积小、高效、节能、环保等优点,被广泛应用于纳米技术、传感器、医疗设备等多个领域。比如电子设备领域:微型制冷片可以应用于高性能电子设备,如计算机芯片、激光器等,通过控制设备的温度,可以提高设备的性能和可靠性。光电设备领域:微型制冷片可以用于制冷光电探测器、半导体激光器等光电设备,提高其性能和灵敏度。生物医学领域:微型制冷片可以用于冷冻切片技术、冷冻保存、细胞培养等。通过快速降温可以减少细胞损伤,提高冷冻效果。汽车电子领域:微型制冷片可以用于制冷车载电子设备,如空调控制器、导航仪等。可以提高车载电子设备的工作效率和稳定性,同时减少汽车燃料的消耗。航空航天领域:微型制冷片可以用于卫星、飞机等高空设备的制冷和温控,提高设备的可靠性和性能。新能源领域:微型制冷片可以用于新能源技术,如太阳能电池板等,通过制冷可以提高太阳能电池的转化效率,减少能量损失。
作者: 斯利通陶瓷电路板, 来源:面包板社区
链接: https://mbb.eet-china.com/blog/uid-me-3876914.html
版权声明:本文为博主原创,未经本人允许,禁止转载!
文章评论(0条评论)
登录后参与讨论