具有小型化,高品质,高能量储存和低电阻之特性的径向型电感、电容、电阻等PCB表面贴装元件在现代通讯、高端光电、智能设备领域的应用越来越广泛。此类元件的PCB焊盘与阻焊开窗设计尺寸基本等大(如图1中绿色部分为焊盘),因焊盘四周无阻焊开窗沟槽挡锡,钢网与焊盘可处于同一水平面上让元件引脚具有更加均匀的上锡性能、更加优良的电接触性能和散热性能。作为信号传输的桥梁,印制电路板在出货前必须对面板上所有焊接点的网络结构进行电性能检测,以确保印制电路板正常的电气性能。
常规电测试的焊盘为圆型或方型,以上印制电路板中阻焊开窗与焊盘等大且呈不规则形状形如“D”字,以下将此类异型焊盘定义为“D”字型异型焊盘。由于此类焊盘与阻焊开窗基本等大,阻焊对位精度必须与线路的焊盘大小一致,任何的阻焊偏差均为使焊盘变小,导致电测更加困难。本文将以一款“D”字型异型焊盘(M产品)为例,结合关键流程加工精度控制方案与电测设备的技术特点,介绍其制作过程中的关键技术,找出最优的流程控制方法与电测加工方案,为企业大规模自动化快速生产“D”字型异型焊盘的印制电路板提供技术保障。图1 “D”字型异型焊盘资料图
图2 “D”字型异型焊盘阻焊偏位图
将飞针机测试针取下百倍镜下观查,发现针尖部位基本被黑油覆盖,主要原因为哑光黑油表面不光滑,焊盘偏位后测试针尖与哑光黑油接触粘连油墨导致。经用无尘布沾油精清洁针头后,测试恢复正常。
PCB异型焊盘尺寸与精度变化问题线路板所有焊盘在制作过程中受设备、材料及工艺精度的影响有一定的偏差。由于异型焊盘与开窗等大,当阻焊开窗与外层线路菲林存在偏差时焊盘则会因错位而变小(如图3阴影部分),因板材涨缩或外层线路菲林涨缩导至被测焊盘偏移较大时,其被测焊盘中心的物理对位点与测试资料的坐标值偏差也变大,最终导致对位不精准测试失效。因此制作过程中需要对板材涨缩、外层线路与阻焊菲林的精确对位进行实验,以改善PCB异型焊盘的尺寸与精度问题。图3 偏位的圆型焊盘
通用与飞针测量系统的精度问题在硬件方面,通用设备、夹具制作及飞针测量系统在移动测试的过程中的精度偏差会测试针尖与被测焊盘的中心位置的对位问题有一定的影响,测试软件在逻辑运算时不能及时获取反馈的电信号会判定测试失效。因此需要从设备精度控制、测试工具的开发等方面改善测量系统的对位精度。表1 M产品信息
从以上数据分析,异型焊盘占比7740÷59070*100%=13%,由于最小焊盘尺寸只有100μm,及异型焊盘因阻焊无开窗偏位也会变小,M产品实验全部采用飞针机生产,每项实验测试工作板数量为4块共120个单元,测试数据为随机抽取前100个单元测试并记录。实验产品M层压结构图图4 M产品叠层结构图
实验流程图5 M产品实验流程图
关键流程控制方案表2 关键流程控制方案
实验方案表3 关键流程实验方案
A、将“D”字型异型焊盘线路及阻焊均按客户原稿200μm资料制作,常规生产完阻焊二次元测试。
B、将“D”字型异型焊盘单边加大25μm,阻焊开窗单边加大25μm,常规生产完阻焊二次元测试。
C、将“D”字型异型焊盘单边加大50μm,阻焊开窗单边加大25μm,常规生产完阻焊二次元测试。
D、将“D”字型异型焊盘单边加大75μm,阻焊开窗单边加大50μm,常规生产完阻焊二次元测试。
焊盘大小与阻焊开窗大小由品质工程师各测量10组,统计分析数据。
实验流程图6 工程设计优化实验流程
表4 工程设计优化实验数据
B、制作首板,调整预补偿值后压合。按正常流程生产至电测工序暂停
C、将100片生产板放入框内依次测试1次,统计测试数据
实验流程图7 层压涨缩控制实验流程
表5 层压涨缩控制数据分析表
B、LDI对位、曝光、显影、蚀刻。按正常流程生产至电测工序暂停;
C、将100片生产板放入设备内测试1次,统计测试数据。
实验流程图8 线路菲林对位实验流程
表6 线路菲林对位精度提升数据分析表
B、常规阻焊印刷、LDI曝光、显影、烤板。按正常流程生产至电测工序暂停。
C、将100片生产板放入设备内测试1次,统计测试数据
实验流程图9 阻焊开窗菲林对位精度提升实验流程
表7 阻焊开窗菲林对位精度提升实验数据
分析:阻焊的焊盘尺寸偏移数据由质量工程师用二次元测量。从数据看LDI生产的“D”字型异型焊盘中心与资料值的平均偏差比常规手工对位更小,测试1次良率提升23%,对测试效率有一定的改善效果。电测能力提升实验流程图10 电测能力提升实验流程
表8 电测能力提升实验方法
表面处理磨板线磨板
工艺流程因设备及工艺流程不同,各PCB厂清除氧化的流程不相同,具体需按厂内设备工艺流程执行。
图11 飞针机“D”字型焊盘对位
测试针工艺设计实验材质及接触性能分析锰钢材质的测试刀打磨后针尖宽度在120μm以上(如下图),由于刀尖较宽在测试“D”字型焊盘时针与焊盘的接触性能不佳(如下图)。为了改善针与焊盘的接触性能,需要将测试针的针尖二次成形让针尖宽度在50-100μm。经过特殊工艺对钨钢打磨加工后,其针尖能满足50-100μm的二次加工要求,到比常规刀更锋利。图12 锰钢刀
图13 锰钢刀刀尖宽度
图14 刀与焊盘接触性能示意图
五孔钨钢刀结构设计由于新设计的五孔钨钢刀的刀尖宽度为50-80μm,比常规刀更锋利。刀尖与焊盘接触的面积减小了半时压力会增加数倍,为减轻焊盘的针印,在刀座注塑部位设计5个孔让刀身更具柔性特征去缓冲减小针尖的压力,让针尖与焊盘有更轻的接触性能。经10X确认,测试针与焊盘接触的测试针印满足行业品质标准要求。图15 五孔钨钢刀结构
飞针刀制作先制作钨钢刀的刀身,然后对刀身表面进行开锋二次加工,然后与注塑成型的五孔刀体压接在一起并安装金属信号线使整个飞针刀呈一体结构(如下图)。图16 新5孔钨钢飞针刀
飞针刀的使用情况安装在设备上试用发现刀身变软,主要原因为高温打磨钨钢刀表面时使其性能下降,统计使用寿命约为130万次。
只对飞针刀的刀尖进行打磨,经试用2个月寿命为500万次左右出现弯曲现象,用1500#的纱纸沾水打磨后继续使用至700万次针尖面积变大至100μm以上。
图17 针尖打磨
图18 二次元放大可看到针尖弯曲变型
实验数据表9 电测工艺技术提升数据表
方案优化总结表10 方案优化总结数据表
最优方案实验实验方案表11 最优方案实验方案
实验设计A、工程设计:外层成铜厚度为35μm且客户要求阻焊开窗与焊盘等大的产品,线路菲林单边加大50μm,阻焊菲林单边加大25μm制作线路与阻焊菲林文件;B、层压:制作首板,调整预补偿值后压合,确保产品涨缩与客户资料的精确性;
C、线路:LDI制作;确保线路焊盘精度。
D、阻焊:与线路同一台LDI制作,确保涨缩的一致性与阻焊开窗对位精度;
E、电测:
小批量采用飞针测试,选用针尖直径为50-80μm的测试针,选用精度最高的飞针机或新机作校正,安装测试针后再做针尖校正;测试资料先依据板的涨缩系数进行调整,并用调整后的资料制作测试文件;对位点选择工作板内对角的“D”字型异型焊盘,进一步确保对位精度。
通用测试时,需选择比测量“D”字型焊盘尺寸能力小50μm的通用机夹具,钻孔文件及测试资料先依据板的涨缩系数进行调整,并用调整后的资料制作夹具的钻孔及测试文件。如有CCD对位系统的设备,CCD对位点应选择“D”字型焊盘,以提升对位精度。
实验数据表12 最优方案实验数据总结
实验总结A、阻焊开窗大小的控制:在工程设计端,依据外层铜厚及生产企业设备的工艺能力对焊盘尺寸进行补偿,确保焊盘大小与阻焊开窗的大小一致,本次实验“D”字型焊盘最小偏差达到13μm;B、“D”字型异型焊盘PCB制作精度的控制
C、电测工艺能力及测试流程的控制
样板订单:
选择飞针机测试时首先需要选择精度最高的设备,并对测试针经过特殊处理让针尖与焊盘有更优良的接触性能,然后对设备的精度及测试针的对准度进行校正,确保设备处于最佳状态。测量被测产品的涨缩并依据涨缩值调整测试资料,让被测焊盘的资料坐标与实物板上焊盘的坐标能精准重合,对于哑黑油产品,需要不定期清洁针尖油墨,让针与焊盘接触更精良。
批量订单:
在设备常规焊盘侦测能力的基础上再增加50μm计算采用的夹具密度,夹具及测试资料采用实物板测量涨缩。CCD对位的设备需要将对位点设计为“D”字型异型焊盘,以提升对位精度。
4.8 其它焊盘与阻焊开窗等大的PCB产品
图19 其它焊盘与阻焊开窗等大的“D”字型异型焊盘PCB产品展示
参考文献
[1] 林金堵、梁志立、陈培良. 现代印制电路先进技术. 中国印制电路行业协会CPCA及印制电路信息杂志社 PCI 发行
[2] LG PCB. LG Electronics Inc. Brief Introduction
[3] IPC 9252.
[4] IPC 600H.
聂兴培
14年印制电路板相关工作经验
金百泽制造工程部工艺工程师
文章评论(0条评论)
登录后参与讨论