电机编码器性能指标、趋势和电子器件
阅读本文后,您应该能够回答以下关键问题:
● 什么是编码器,它如何提高逆变器和电机驱动系统的性能?
● 哪些编码器性能指标对特定系统最重要?阅读本文后,您将了解如何使编码器的分辨率、精度和可重复性规格与电机和机器人系统规格相匹配。
● 编码器常用的电子元件有哪些,未来的发展趋势是什么?阅读本文后,您将了解设备健康监测、边缘智能、稳定可靠的检测和高速连接如何支持未来的编码器设计。
闭环电机控制反馈系统
在过去的几十年里,从传统的并网电机向逆变器驱动电机的过渡一直在稳步、持续地进行。这是工业旋转设备的重大转型,通过提高电机和终端设备的使用效率,不仅实现了工艺改进,还能节省大量能源。变速驱动器和伺服驱动系统提高了电机控制性能,从而可以改善要求严苛应用的质量和同步功能。如图1所示,功率级使用了功率逆变器、高性能位置检测以及电流/电压闭环反馈,因此电机性能和效率得以提高。
将变频电压施加于逆变器采用脉冲宽度调制的电机,可以实现对电机的开环速度控制。在稳态或缓慢变化的动态条件下,这将相当有效,并且较低性能应用中的许多电机驱动器采用开环速度控制,而不需要编码器。但是,这种方法有几个缺点:
● 由于没有反馈,速度精度很有限
● 由于无法优化电流控制,电机效率很低
● 必须严格限制瞬态响应,以免电机丧失同步
图1.闭环电机控制反馈系统
什么是位置编码器?
编码器通过跟踪旋转轴的速度和位置来提供闭环反馈信号。光学和磁编码器技术使用非常广泛,如图2所示。在通用伺服驱动器中,编码器用于测量轴位置,从中可推导出驱动器转速。机器人和离散控制系统需要准确且可重复的轴位置。光学编码器由带有精细光刻槽的玻璃圆盘组成。当光穿过圆盘或从圆盘反射时,光电二极管传感器检测光的变化。光电二极管的模拟输出经过放大和数字化处理后,通过有线电缆发送到逆变器控制器。磁编码器由安装在电机轴上的磁体和磁场传感器组成,传感器提供正弦和余弦模拟输出,输出经过放大和数字化处理。光学和磁传感器信号链类似,如图2所示。
电机编码器类型、技术和性能指标
单圈绝对值编码器在通电后会返回机械或电气360°范围内的绝对位置信号。电机轴的位置可以立即读取。多圈绝对值编码器不仅具有绝对位置功能,而且能提供360°圈数计数。相比之下,增量编码器提供相对于旋转起点的位置。增量编码器提供一个索引脉冲来指示0°,并提供一个单脉冲来计数圈数,或提供一个双脉冲来提供方向信息。
图2.(a) 光学编码器,(b) 磁编码器
编码器的分辨率是指电机轴旋转360°时可以区分的位置数量。通常,最高分辨率的编码器使用光学技术,而中高分辨率的编码器使用磁或光学传感器。中低分辨率编码器使用旋变器(旋转变压器)或霍尔传感器。光学或磁编码器使用高分辨率信号调理。大多数光学编码器是增量式的。编码器可重复性是一项关键性能指标,用于衡量编码器返回到同一指令位置的一致性。这对于重复性任务至关重要,例如在PCB制造过程中,放置半导体所用的机器人或贴片机须具有良好的可重复性。
图3.编码器类型
表1.编码器关键性能指标
电机编码器精度和可重复性的重要性
贴片机/机器人是食品包装和半导体制造行业中常用的自动化机器。为了提高工艺效率,需要具有高精度和可重复性的机器或机器人。使用高性能电机编码器可实现高精度、可重复性和高效率。
图4展示了机器人中的编码器应用案例。电机通过精密减速变速箱驱动机器臂中的每个关节。机器人关节角度通过电机上安装的精密轴角编码器(θm)和机器臂上安装的附加编码器(θj)来测量。
对于机器人,数据手册上列出的主要性能规格是可重复性,其数量级通常在亚毫米级。在了解可重复性规格和机器人的作用范围之后,就可以推断旋转编码器的规格。
图4.电机编码器(θm)和关节编码器(θj)的角度可重复性,以及机器人作用范围(L)
关节编码器所需的角度可重复性(θ)可从三角函数得出:机器人可重复性除以作用范围的反正切。
多个关节结合起来可实现机器人的整体作用范围。传感器应具有比目标角度精度更高的性能。必须改善每个关节的可重复性规格,这里假设改进10倍。对于电机编码器,可重复性由齿轮比(G)定义。
例如,对于表2所示的机器人系统,关节编码器需要20位到22位的可重复性规格,而电机编码器需要14位到16位的分辨率。
表2.编码器可重复性和机器人可重复性规格
电机编码器技术的未来发展趋势
图5说明了编码器的未来发展趋势和实现这些趋势的技术。
图5.编码器发展趋势和实现这些趋势的技术
Rockwell1关于伺服驱动器、编码器和编码器通信端口的研究表明,用于反馈通信的收发器每年增长20%。支持通过两条线(IEEE 802.3dg标准100BASE-T1L)1进行100 Mbps通信的单对以太网(SPE)收发器目前正在研究中,未来的编码器驱动接口将受益于低延迟,目标性能为≤1.5 µs。这种低延迟将支持更快的反馈数据采集和更短的控制环路响应时间。
对机器人和旋转机器(例如涡轮机、风扇、泵和电机)实施的状态监控会记录与机器的健康和性能相关的实时数据,以便针对性地实施预测维护和优化控制。在机器生命周期的早期进行针对性的预测维护,可以减少生产停机的风险,从而提高可靠性、显著节约成本和提高工厂的生产率。将MEMS加速度计放置在编码器中可提供机器的振动反馈,这适合质量控制至关重要的应用。将MEMS加速度计添加到编码器中会很方便,因为编码器具有现成的布线、通信和电源,可以向控制器提供振动反馈。在数控(CNC)机床等一些应用中,从编码器发送到伺服器的MEMS振动数据可用于实时优化系统性能。
使用CbM并结合稳健且寿命更长的位置传感器,可以延长工业资产的使用寿命。磁传感器产生指示周围磁场角位置的模拟输出,可以代替光学编码器。磁编码器可用于湿度较高、污垢严重和灰尘较大的区域。这些恶劣的环境会影响光学解决方案的性能和使用寿命。
对于机器人和其他应用,必须始终清楚机械系统的位置,哪怕在断电的情况下也要明确知晓。标准机器人、协作机器人和其他自动化装配设备在运行过程中突然断电后,需要重新归位并初始化电源,这些停机时间会带来一定的相关成本并导致效率低下。由ADI公司开发的磁性多圈存储器2不需要外部电源也能记录外部磁场的旋转次数,因而可以减小系统尺寸并降低成本。
对于机器人和协作机器人,电机编码器和关节编码器通常需要16位至18位ADC性能,在某些情况下需要22位ADC。有些光学绝对位置编码器也需要高达24位分辨率的高性能ADC。
电机编码器信号链
图6、图7、图8和图9展示了磁性(各向异性磁阻(AMR)和霍尔技术)、光学和旋变编码器的编码器信号链。主要元件分为五大类:
1. 使用磁传感器(AMR、霍尔)跟踪轴位置和速度
2. 设备健康状况监测
a. MEMS传感器
b. 温度传感器
3. 智能
a. 带/不带集成ADC的微控制器
b. 旋变数字转换器(RDC)
4. 电缆接口
a. 高速RS-485/RS-422收发器
b. SPI转RS-485扩展器收发器
5. 信号调理
a. 高性能ADC(12位至24位分辨率)
磁编码器(AMR)
检测
在磁位置传感器应用领域,AMR传感器兼具稳定可靠的性能和高精度。如图6所示,传感器通常位于安装在电机轴上的偶极磁体对面。
图6.AMR传感器系统
AMR传感器对磁场方向变化很敏感,而霍尔技术对磁场强度很敏感。所以传感器对系统中的气隙和机械公差变化具有很强的容忍度,这一点很有优势。此外,AMR传感器的工作磁场没有上限,因此,这种传感器在高磁场下工作时几乎不受杂散磁场的影响。
ADA4571 是一款低延迟集成信号调理功能的AMR传感器,提供单端模拟输出。ADA4571单芯片解决方案提供良好的角度精度(典型角度误差仅为0.10度),工作速度可高达50k rpm。ADA4571-2是双通道版本,可提供完全冗余能力而不影响性能,适合安全关键型应用。
ADA4570 是AAD4571的衍生产品,具有相同的性能,但提供差分输出,适用于更恶劣的环境。ADA457x系列提供的高角度精度和可重复性改善了闭环控制,降低了电机扭矩纹波和噪声。与竞争技术相比,单芯片架构提高了可靠性,减小了尺寸和重量,并且更易于集成。
信号调理和电源
AD7380 4 MSPS双通道同步采样、16位SAR ADC具有许多系统级优势,包括节省空间的3 mm × 3 mm封装,这对于空间受限的编码器PCB板非常重要。4 MSPS吞吐速率确保捕捉到正弦和余弦周期的详细信息,以及最新的编码器位置信息。高吞吐速率支持实施片内过采样,从而缩短数字ASIC或微控制器将准确的编码器位置反馈给电机时的时间延迟。AD7380片内过采样还有一个好处,它可以额外增加2位分辨率,从而与片内分辨率增强功能轻松配合使用。应用笔记AN-20033详细介绍了AD7380的过采样和分辨率增强功能。该ADC的VCC和VDRIVE以及放大器驱动器的电源轨可以由LDO稳压器(例如LT3023)供电。ADP320、LT3023和 LT3029 等多路输出低噪声LDO可用来为信号链中的所有元件供电。
收发器
ADM3066E RS-485收发器具备超低的发送器和接收器偏斜性能,所以非常适合用于传输精密时钟,EnDat 2.2 4等电机控制标准通常要求精密时钟。事实证明,ADM3065E在电机控制应用中采用典型电缆长度的确定性抖动小于5%。ADM3065E具有较宽的电源电压范围,因此这种时序性能水平也可用于需要3.3 V或5 V收发器电源的应用。有关更多信息,请参阅技术文章" 利用现场总线提升速度,扩大覆盖范围 "5。
微控制器
对于需要12位或更低分辨率的应用,可以用集成ADC的微控制器来代替AD7380 ADC。小巧的 MAX32672 超低功耗Arm® Cortex®-M4F微控制器包含一个12位1 MSPS ADC,具有增强的安全性、外设和电源管理接口。
图7.磁编码器(AMR)信号链
资产状况监控
ADXL371 是一款超低功耗、3轴、数字输出、±200g微机电系统(MEMS)加速度计,适用于机器监控。ADXL371性价比高,采用小型3 mm × 3 mm封装,工作温度高达+105°C。在即时导通模式下,ADXL371消耗1.7 μA的电流,同时能持续监测环境影响。当检测到冲击事件超过内部设定的阈值时,器件会切换到正常工作模式,其速度非常快以便记录事件。
ADT7320 是一款高精度数字温度传感器,无需用户校准或校正,具有出色的长期稳定性和可靠性。ADT7320的额定工作温度范围为-40°C至+150°C,采用小型4 mm × 4 mm LFCSP封装。
表3.磁编码器(AMR)信号链推荐元件
磁编码器(霍尔)
可以使用AD22151或 AD22151G 设计霍尔编码器。AD22151G是一款线性磁场传感器,其输出电压与垂直施加于封装上表面的磁场成比例。为了设计编码器系统,将等间距的磁体放置在旋转电机轴上。当旋转轴磁体经过霍尔传感器时,传感器输出的电压达到峰值。使用更多磁体或传感器可以获得更高的分辨率。霍尔效应编码器可以使用MAX32672和ADM3066E以支持有线接口。ADXL371 MEMS和ADT7320可为恶劣的编码器环境提供状态监控。磁编码器(AMR)部分提供了有关这些信号链元件的更多信息。
表4.磁编码器(霍尔)信号链推荐元件
光学编码器
光学编码器信号链元件与磁编码器(AMR)部分介绍的元件几乎相同。但是,为了支持更高的编码器分辨率,建议使用 AD7760 2.5 MSPS、24位、100 dB Σ-Δ ADC。它融合了宽输入带宽、高速特性和Σ-Δ转换技术的优势,2.5 MSPS时信噪比(SNR)可达100 dB,因此非常适合高速数据采集应用。
图8.磁编码器(霍尔)信号链
图9.光学编码器信号链
表5.光学编码器信号链推荐元件
旋变(耦合)编码器
旋变编码器具有一些优点,例如较高的机械可靠性和高精度;但与磁体和ADA4571相比,旋变器价格昂贵。
AD2S1200 将来自旋变器的信号转换为数字角度或角速率。图10显示了旋变器信号链。两个放大器用于创建三阶巴特沃斯低通滤波器,以将旋变器信号传递到AD2S1200。有关更多信息,请参阅电路笔记CN0276。找元器件现货上唯样商城
为节省空间并降低设计复杂性,建议使用 LTC4332 SPI扩展器。LTC4332支持系统分区,提供了将微控制器置于伺服器中而非编码器中的选项。如果编码器需要微控制器,可以使用MAX32672 SPI接口直接连接AD2S1200,并且可以用ADM3065E RS-485收发器代替LTC4332。
如果使用LTC4332,AD2S1200 SPI输出会转换为稳健的差分现场总线接口。LTC4332包括三条从机选择线,因此MEMS和温度传感器等额外传感器可以与AD2S1200连接到同一条总线上。
表6.旋变编码器信号链推荐元件
文章评论(0条评论)
登录后参与讨论