原创 提取信号的时域指标:峰值指标 峭度指标 裕度指标?

2011-6-14 17:33 14935 12 12 分类: 测试测量
 
matlab里用什么函数可以提取振动信号的峰值指标和峭度指标以及裕度指标?
在这里请教达人了阿,俺是学机械的,刚接触到这东西,不懂得地方请前辈们多多指教阿,小生万分感激!
--------------------------------
有两个函数用来计算偏斜度和峭度:skewness和kurtosis。
-------------------------------
完全可以按照峰值指标和峭度指标以及裕度指标的定义自己编写函数啊,不是现在流行自己编么,而且自己编写之后能对概念有更深入的了解,况且这几个指标定义狠简单。
==============================
==============================
 
时域指标的讨论
 
 
59843_1247552654EEus.jpg
有量纲
59843_1247552661s4qq.jpg
无量纲

我们在进行简易诊断时,常用到时域指标,这应该属于幅值域分析。例如:滚动轴承峭度系数判别法、有效值和峰值判别法、无量纲指标判别法等等。
59843_1247552663VHh7.png
这是峭度在不同值时的图示
59843_1247552667WZwa.png
大家能不能讨论一下其它几个量的图示或物理意义呢?我觉得这对我们正确选择参数,应用参数有意义。我并非要刨根问底,理论的清晰对应用有不可轻视的重要作用。如果我都不知道它是什么意思就按部就班,早晚会出问题!
--------------------------------
一、有量纲幅域参数:
(1)信号的均值反映信号中的静态部分,一般对诊断不起作用,但对计算其它参数有很大影响,所以,一般在计算时应先从数据中去除均值,剩下对诊断有用的动态部分。
(2)其中的偏斜度α反映p(x)对纵坐标的不对称性,如果α越大,不对称越利害。
(3)一般,随着故障的增大,均方根值、方根幅值、绝对平均值、峭度及峰值会不同程度地增大,且峭度最为敏感。峭度对探测信号中含有脉冲的故障最敏感、有效。
二、无量纲幅域参数:
(1)一般,原始数据幅值增加一倍,有量纲幅域参数增大,无量纲幅域参数不变;
(2)对于正弦波、三角波,不管频率、幅值多大,这些参数的值不变;这是由于频率不会改变幅值概率密度函数,而幅值的变化对算式的分子、分母影响相同。
(3)对于正态随机信号,波形指标、峭度指标为定值,其余指标随峰值概率减小而上升;
(4)峭度指标、裕度指标、脉冲指标对脉冲故障比较敏感。早期故障发生时,大幅脉冲不很多,此时均方根值变化不大,但上述指标已增加,当故障发展时,这些指标会增加,但到一定的程度会逐渐下降。所以,这些参数对早期故障敏感,但稳定性不好;
(5)均方根值对早期故障不敏感,但稳定性好。
三、在使用这些参数时应注意采取以下措施:
(1)同时使用Kv、CLf与xrms进行监测,以兼顾敏感性与稳定性;
(2)连续监测可发现峭度指标(或裕度指标)的变化趋势,当指标值上升到顶点开始下降时,要密切注意故障是否发生。
四、无量纲时域参数对故障的敏感性与稳定性的比较:
参数                           敏感性             稳定性
波形指标Sf                    差                     好
峰值指标Cf                 一般                  一般
脉冲指标If                   较好                一般
裕度指标CLf                  好                 一般
峭度指标Kv                   好                   差
均方根值Xrms              较差                较好
---------------------------------
您的见解是正确的!
我的意思是,计算机计算这些量是容易的,而它们的意义是什么呢?
正如您提到“峭度指标、裕度指标、脉冲指标对脉冲故障比较敏感”,其中峭度会随冲击的增多而增大(故障初期),这是因为冲击信号的增多会导致其“概率密度函数”图像变得陡峭(如上图所示,黑色峭度是0,橘黄色峭度是3),峭度就是从这里来的。
我们的前辈在命名这些参数时都很形象,那其他的量是否也能有这样的解释,用图形解释。这才是我发这个帖的目的。
希望大家讨论!有介绍这方面的书也请大家推荐一下!
-------------------------------
在计算有量纲和无量纲指标时,比如计算有效值、峭度指标、裕度指标、脉冲指标时,是否要去除测试数据的均值?谢谢
 
------------------------------
需要去除均值项,因为时域指标都是动态指标,而均值是静态的,所以在数据处理时需要需要去除均值,个人理解,望继续讨论。
 
------------------------------
=============================
 
1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.11. Measures of Skewness and Kurtosis
Skewness and Kurtosis A fundamental task in many statistical analyses is to characterize the location and variability of a data set. A further characterization of the data includes skewness and kurtosis.

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the center point.

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. That is, data sets with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean rather than a sharp peak. A uniform distribution would be the extreme case.

The histogram is an effective graphical technique for showing both the skewness and kurtosis of data set.

Definition of Skewness For univariate data Y1, Y2, ..., YN, the formula for skewness is:
  • skewness = SUM(Y(i) - YBAR)**3/(N-1)*s**3 where the
 summation is from 1 to N
where ybar is the mean, s is the standard deviation, and N is the number of data points. The skewness for a normal distribution is zero, and any symmetric data should have a skewness near zero. Negative values for the skewness indicate data that are skewed left and positive values for the skewness indicate data that are skewed right. By skewed left, we mean that the left tail is long relative to the right tail. Similarly, skewed right means that the right tail is long relative to the left tail. Some measurements have a lower bound and are skewed right. For example, in reliability studies, failure times cannot be negative.
Definition of Kurtosis For univariate data Y1, Y2, ..., YN, the formula for kurtosis is:
  • kurtosis = SUM(Y(i) - YBAR)**4/(N-1)*s**4 where the
 summation is from 1 to N
where ybar is the mean, s is the standard deviation, and N is the number of data points.

The kurtosis for a standard normal distribution is three. For this reason, some sources use the following defition of kurtosis:

  • kurtosis = SUM[i=1 to N][(Y(i) - YBAR)**4]/((N-1)*s**4) - 3
This definition is used so that the standard normal distribution has a kurtosis of zero. In addition, with the second definition positive kurtosis indicates a "peaked" distribution and negative kurtosis indicates a "flat" distribution.

Which definition of kurtosis is used is a matter of convention. When using software to compute the sample kurtosis, you need to be aware of which convention is being followed.

Examples The following example shows histograms for 10,000 random numbers generated from a normal, a double exponential, a Cauchy, and a Weibull distribution.

plots showing histograms for 10,000 random numbers generated from
 a normal, double exponential, Cauchy, and Weibull distribution

Normal Distribution The first histogram is a sample from a normal distribution. The normal distribution is a symmetric distribution with well-behaved tails. This is indicated by the skewness of 0.03. The kurtosis of 2.96 is near the expected value of 3. The histogram verifies the symmetry.
Double Exponential Distribution The second histogram is a sample from a double exponential distribution. The double exponential is a symmetric distribution. Compared to the normal, it has a stronger peak, more rapid decay, and heavier tails. That is, we would expect a skewness near zero and a kurtosis higher than 3. The skewness is 0.06 and the kurtosis is 5.9.
Cauchy Distribution The third histogram is a sample from a Cauchy distribution.

For better visual comparison with the other data sets, we restricted the histogram of the Cauchy distribution to values between -10 and 10. The full data set for the Cauchy data in fact has a minimum of approximately -29,000 and a maximum of approximately 89,000.

The Cauchy distribution is a symmetric distribution with heavy tails and a single peak at the center of the distribution. Since it is symmetric, we would expect a skewness near zero. Due to the heavier tails, we might expect the kurtosis to be larger than for a normal distribution. In fact the skewness is 69.99 and the kurtosis is 6,693. These extremely high values can be explained by the heavy tails. Just as the mean and standard deviation can be distorted by extreme values in the tails, so too can the skewness and kurtosis measures.

Weibull Distribution The fourth histogram is a sample from a Weibull distribution with shape parameter 1.5. The Weibull distribution is a skewed distribution with the amount of skewness depending on the value of the shape parameter. The degree of decay as we move away from the center also depends on the value of the shape parameter. For this data set, the skewness is 1.08 and the kurtosis is 4.46, which indicates moderate skewness and kurtosis.
Dealing with Skewness and Kurtosis Many classical statistical tests and intervals depend on normality assumptions. Significant skewness and kurtosis clearly indicate that data are not normal. If a data set exhibits significant skewness or kurtosis (as indicated by a histogram or the numerical measures), what can we do about it?

One approach is to apply some type of transformation to try to make the data normal, or more nearly normal. The Box-Cox transformation is a useful technique for trying to normalize a data set. In particular, taking the log or square root of a data set is often useful for data that exhibit moderate right skewness.

Another approach is to use techniques based on distributions other than the normal. For example, in reliability studies, the exponential, Weibull, and lognormal distributions are typically used as a basis for modeling rather than using the normal distribution. The probability plot correlation coefficient plot and the probability plot are useful tools for determining a good distributional model for the data.

Software The skewness and kurtosis coefficients are available in most general purpose statistical software programs, including Dataplot.
PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
12
关闭 站长推荐上一条 /3 下一条