原创 话说三极管

2011-3-7 17:39 2166 11 11 分类: 模拟
 

三极管至从出现以来,以简单的构造,广泛的运用,为集成电路的高速发展做出


了卓越的贡献。并为计算机的诞生铺平了道路。真空三极管的发明,不仅成为真


空电子学的开端,也是电子学历史的开端,推动了人类文明的进程。


 

       三极管发明于20世纪初期,它的出现产生了第三次工业革命的契机,至从它广泛运用于社会生活以来,在计算机发明问世以来,短短半个世纪,人类文明迅速又电气时代走向自动化时代,三极管在计算机技术力的广泛运用,才又了集成技术的空前发展,计算机迅速走向社会大众,为人民的生活飞速发展产生了不可磨灭的贡献,而三极管的特性使其仍然具有广泛的发展前景,因此研究三极管的发展与应用不仅有极为重要的学术意义还有广泛的社会意义,本文将从三极管的历史以及其工作原理及应用上详细系统的论证其广阔的前景以及重要的发展意义。


三极管的发明历史


 1906年10月25日,美国科学家德·福雷斯特申请了真空三极管放大器的专利,第二天又向美国电气工程师协会提交了关于三级管放大器的论文。他的专利于1907年1月15日被批准。


    福雷斯特的真空三级管建立在前人发明的真空二极管的技术基础之上。1904年,英国伦敦大学的弗莱明发明了真空二极管(Vacuum Diode Tube)。真空二极管只能单向导电,可以对交流电流进行整流,或者对信号进行检波,但是它不能对信号进行放大。没有能够放大信号的器件,电子技术就无法继续发展。


为了提高真空二极管检波灵敏度,福雷斯特在玻璃管内添加了一种栅栏式的金属网,形成电子管的第三个极。他惊讶地看到,这个“栅极”仿佛就像百叶窗,能控制阴极与屏极之间的电子流;只要栅极有微弱电流通过,就可在屏极上获得较大的电流,而且波形与栅极电流完全一致。也就是说,在弗莱明的真空二极管中增加了一个电极,就成了能够起放大作用的新器件,他把这个新器件命名为三极管(Triode)。


ff24ae64-fe1f-406a-8f3d-19d28604e359.GIF


     真空三极管除了可以处于“放大”状态外,还可分别处于“饱和”与“截止”状态。“饱和”即从阴极(或者叫发射极,emitter)到屏极(evelope)的电流完全导通,相当于开关开启;“截止”即从阴极到屏极没有电流流过,相当于开关关闭。两种状态可以通过调整栅极上的电压进行控制。因此真空三极管可以充当开关器件,其速度要比继电器快成千上万倍。


概念:


半导体三极管也称双极型晶体管,晶体三极管,简称三极管,是一种电流控制电流的半导体器件.


作用:


把微弱信号放大成辐值较大的电信号, 也用作无触点开关.                    


分类:


        a.按材质分: 硅管、锗管


   b.按结构分: NPN 、 PNP


   c.按功能分: 开关管、功率管、达林顿管、光敏管等.


 工作原理    


    晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。


对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极。 当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。 在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。


e85ac72b-b8e0-447a-8c27-54b2db6c7cf2.GIFc5c2d54c-03d8-4b15-87df-053184b9ad82.GIF



  由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连续性原理得:


Ie=Ib+Ic


 


    这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的


Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:


β1=Ic/Ib


  式中:β--称为直流放大倍数, 集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:


β= △Ic/△Ib


  式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。


  三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。


图一是NPN管的结构图,它是由2块N型半导体中间夹着一块P型半导体所组成,从


图可见发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为


集电结,三条引线分别称为发射极e、基极b和集电极。


当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电


位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。


在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(控穴)很容易地截越过发射结构互相向反方各扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。


由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区


而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复


合掉的基区空穴由基极电源Eb重新补纪念给,从而形成了基极电流Ibo根据电流连


续性原理得:


Ie=Ib+Ic


这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:


β1=Ic/Ib


式中:β--称为直流放大倍数,


集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:


β= △Ic/△Ib


式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。


三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,


 


通过电阻转变为电压放大作用。  


 


三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。
 00fb417d-a86f-4743-b76e-cb91451dd21a.gif
下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。

三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。

下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。

如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

对于PNP型三极管,分析方法类似,不同的地方就是电流方向跟NPN的刚好相反,因此发射极上面那个箭头方向也反了过来——变成朝里的了。


PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
我要评论
0
11
关闭 站长推荐上一条 /3 下一条