原创 AD/DA的分类与指标

2009-11-8 21:14 2091 14 10 分类: 工程师职场

AD/DA的分类与指标


一、AD转换器


1. AD转换器的分类


    下面简要介绍常用的几种类型的基本原理及特点:积分型、逐次逼近型、并行比较型/串并行型、Σ-Δ调制型、电容阵列逐次比较型及压频变换型。 


1)积分型(如TLC7135


 积分型AD工作原理是将输入电压转换成时间(脉冲宽度信号)或频率(脉冲频率),然后由定时器/计数器获得数字值。其优点是用简单电路就能获得高分辨率,但缺点是由于转换精度依赖于积分时间,因此转换速率极低。初期的单片AD转换器大多采用积分型,现在逐次比较型已逐步成为主流。


2) 逐次比较型SRA(如TLC0831


    逐次比较型AD由一个比较器和DA转换器通过逐次比较逻辑构成,从MSB开始,顺序地对每一位将输入电压与内置DA转换器输出进行比较,经n次比较而输出数字值。其电路规模属于中等。其优点是速度较高、功耗低,在低分辩率(<12位)时价格便宜,但高精度(>12位)时价格很高。


3) 并行比较型/串并行比较型(如TLC5510 


并行比较型AD采用多个比较器,仅作一次比较而实行转换,又称FLash(快速)型。由于转换速率极高,n位的转换需要2n-1个比较器,因此电路规模也极大,价格也高,只适用于视频AD转换器等速度特别高的领域。


串并行比较型AD结构上介于并行型和逐次比较型之间,最典型的是由2n/2位的并行型AD转换器配合DA转换器组成,用两次比较实行转换,所以称为Half flash(半快速)型。还有分成三步或多步实现AD转换的叫做分级(Multistep/Subrangling)型AD,而从转换时序角度又可称为流水线(Pipelined)型AD,现代的分级型AD中还加入了对多次转换结果作数字运算而修正特性等功能。这类AD速度比逐次比较型高,电路规模比并行型小。


4)Σ-Δ(Sigma-delta)调制型(如AD7705


Σ-ΔAD由积分器、比较器、1DA转换器和数字滤波器等组成,转换精度取决于参考输入和输入时钟频率。原理上近似于积分型,将输入电压转换成时间(脉冲宽度)信号,用数字滤波器处理后得到数字值。电路的数字部分基本上容易单片化,因此容易做到高分辨率。主要用于音频和测量。


Σ-Δ转换器的主要优势在于其较高的分辨率。Flash型和逐次逼近ADC采用并联电阻或者串联电阻,这些方法的问题在于电阻的精确度将直接影响转换结果的精确度。尽管新式的ADC采用非常精确的激光微调电阻网络,但在电阻并联上仍然不甚精确。Σ-Δ转换器不存在电阻并联,但通过若干采样可得到收敛的结果。


Σ-Δ转换器的主要劣势在于其转换速率。由于该转换器俄工作机理是对输入进行附加采样,因此转换需要耗费更多的时钟周期。在给定的时钟速率条件下,Σ-Δ转换器的速率低于其它类型的转换器;或从另一角度而言,对于给定的转换速率,Σ-Δ转换器需要更高的时钟频率。


Σ-Δ转换器的另一劣势在于将占空(duty cycle)信息转换为数字输出的数字滤波器的结构很复杂,但Σ-Δ转换器因其有在IC裸片上添加数字滤波器或者DSP功能而日益得到广泛应用。


5)电容阵列逐次比较型


    电容阵列逐次比较型AD在内置DA转换器中采用电容矩阵方式,也可称为电荷再分配型。一般的电阻阵列DA转换器中多数电阻的值必须一致,在单芯片上生成高精度的电阻并不容易。如果用电容阵列取代电阻阵列,可以用低廉成本制成高精度单片AD转换器。最近的逐次比较型AD转换器大多为电容阵列式的。


6)压频变换型(如AD650


    压频变换型(Voltage-Frequency Converter)是通过间接转换方式实现模数转换的。其原理是首先将输入的模拟信号转换成频率,然后用计数器将频率转换成数字量。从理论上讲这种AD的分辨率几乎可以无限增加,只要采样的时间能够满足输出频率分辨率要求的累积脉冲个数的宽度。其优点是分辩率高、功耗低、价格低,但是需要外部计数电路共同完成AD转换。


2. AD转换器的主要技术指标


1)分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。分辩率又称精度,通常以数字信号的位数来表示。


2)转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。采样时间则是另外一个概念,是指两次转换的间隔。为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。常用单位是kspsMsps,表示每秒采样千/百万次(kilo / Million Samples per Second)。


3)量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。通常是1 个或半个最小数字量的模拟变化量,表示为1LSB1/2LSB


4)偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。


5)满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。


6)线性度(Linearity) 实际转换器的转移函数与理想直线的最大偏移,不包括以上三种误差。 


其他指标还有:绝对精度(Absolute Accuracy) ,相对精度(Relative Accuracy),微分非线性,单调性和无错码,总谐波失真(Total Harmonic Distotortion缩写THD)和积分非线性。


二、DA转换器


1.DA转换器的分类


  DA转换器的内部电路构成无太大差异,一般按输出是电流还是电压、能否作乘法运算等进行分类。大多数DA转换器由电阻阵列和n个电流开关(或电压开关)构成。按数字输入值切换开关,产生比例于输入的电流(或电压)。此外,也有为了改善精度而把恒流源放入器件内部的。一般说来,由于电流开关的切换误差小,大多采用电流开关型电路,电流开关型电路如果直接输出生成的电流,则为电流输出型DA转换器。此外,电压开关型电路为直接输出电压型DA转换器。


1)电压输出型(如TLC5620


  电压输出型DA转换器虽有直接从电阻阵列输出电压的,但一般采用内置输出放大器以低阻抗输出。直接输出电压的器件仅用于高阻抗负载,由于无输出放大器部分的延迟,故常作为高速DA转换器使用。


2)电流输出型(THS<?xml:namespace prefix = st1 ns = "urn:schemas-microsoft-com:office:smarttags" />5661A)


  电流输出型DA转换器很少直接利用电流输出,大多外接电流电压转换电路得到电压输出,后者有两种方法:一是只在输出引脚上接负载电阻而进行电流电压转换,二是外接运算放大器。用负载电阻进行电流电压转换的方法,虽可在电流输出引脚上出现电压,但必须在规定的输出电压范围内使用,而且由于输出阻抗高,所以一般外接运算放大器使用。此外,大部分CMOSDA转换器当输出电压不为零时不能正确动作,所以必须外接运算放大器。当外接运算放大器进行电流电压转换时,则电路构成基本上与内置放大器的电压输出型相同,这时由于在DA转换器的电流建立时间上加入了达算放入器的延迟,使响应变慢。此外,这种电路中运算放大器因输出引脚的内部电容而容易起振,有时必须作相位补偿。


3)乘算型(如AD7533


  DA转换器中有使用恒定基准电压的,也有在基准电压输入上加交流信号的,后者由于能得到数字输入和基准电压输入相乘的结果而输出,因而称为乘算型DA转换器。乘算型DA转换器一般不仅可以进行乘法运算,而且可以作为使输入信号数字化地衰减的衰减器及对输入信号进行调制的调制器使用。


4)一位DA转换器


  一位DA转换器与前述转换方式全然不同,它将数字值转换为脉冲宽度调制或频率调制的输出,然后用数字滤波器作平均化而得到一般的电压输出(又称位流方式),用于音频等场合。


  2.DA转换器的主要技术指标:


1)分辩率(Resolution)指最小模拟输出量(对应数字量仅最低位为‘1’)与最大量(对应数字量所有有效位为‘1’)之比。


2)建立时间(SettingTime)是将一个数字量转换为稳定模拟信号所需的时间,也可以认为是转换时间。DA中常用建立时间来描述其速度,而不是AD中常用的转换速率。一般地,电流输出DA建立时间较短,电压输出DA则较长。


  其他指标还有线性度(Linearity),转换精度,温度系数/漂移。


附件为学习DA/AD基础知识的ppt。https://static.assets-stash.eet-china.com/album/old-resources/2009/3/4/0a23b3c0-9095-47a1-8d46-3478cca0908e.rar


TI AD术语表,有助于学习查看datasheet


http://focus.ti.com.cn/cn/lit/an/zhca068/zhca068.pdf


http://focus.ti.com/lit/an/sbaa147a/sbaa147a.pdf

PARTNER CONTENT

文章评论0条评论)

登录后参与讨论
EE直播间
更多
我要评论
0
14
关闭 站长推荐上一条 /3 下一条