原文由南京理工大学光电学院的 He Yapeng.@School of Electronic Engineering and Photoelectricity Technology at Nanjing University of Science and Technology写就
链接:http://bbs.matwav.com/archiver/?tid-741370.html
ROM初始化文件既可以是*.mif也可以是*.hex文件,但是如果工程需要在 Modelsim中进行仿真的话,则必须生成*.hex文件对ROM进行初始化。一般简单且有规律的初始化数据可以用Excel先生成mif文件再在综合软件中转化为hex文件,但如果所需信号要叠加各种各样的噪声时。Excel则不能胜任,此时我们用MATLAB生成所需初始化数据,在使用下述程序则很容易生成HEX初始化文件。程序先介绍hex文件的结构,后给出matlab程序,且我做了详细的注释,希望对大家有所帮助。
% __Created by He Yapeng.@School of Electronic Engineering and Photoelectricity Technology at Nanjing University of Science and Technology
% --Email:lwkj0920@56.com. ');
% Intel HEX文件是由一行行符合Intel HEX文件格式的文本所构成的ASCII文本文件。在Intel HEX文件中,
% 每一行包含一个HEX记录。这些记录由对应机器语言码和/或常量数据的十六进制编码数字组成。Intel HEX文件通常用于传输将被存于ROM或者EPROM中的程序和数据。大多数EPROM编程器或模拟器使用Intel HEX文件。
% 记录格式
% Intel HEX由任意数量的十六进制记录组成。每个记录包含5个域,它们按以下格式排列:
% :llaaaatt[dd...]cc
% 每一组字母对应一个不同的域,每一个字母对应一个十六进制编码的数字。每一个域由至少两个十六进制编码数字组成,它们构成一个字节,就像以下描述的那样:
% : 每个Intel HEX记录都由冒号开头.
% ll 是数据长度域,它代表记录当中数据字节(dd)的数量.
% aaaa 是地址域,它代表记录当中数据的起始地址.
% tt 是代表HEX记录类型的域,它可能是以下数据当中的一个:
% 00 – 数据记录
% 01 – 文件结束记录
% 02 – 扩展段地址记录
% 04 – 扩展线性地址记录
% dd 是数据域,它代表一个字节的数据.一个记录可以有许多数据字节.记录当中数据字节的数量必须和数据长度域(ll)中指定的数字相符.
% cc 是校验和域,它表示这个记录的校验和.校验和的计算是通过将记录当中所有十六进制编码数字对的值相加,以256为模进行以下补足.
%
% 数据记录
% Intel HEX文件由任意数量以回车换行符结束的数据记录组成.数据记录外观如下:
% :10246200464C5549442050524F46494C4500464C33
% 其中:
% 10 是这个记录当中数据字节的数量.
% 2462 是数据将被下载到存储器当中的地址.
% 00 是记录类型(数据记录)
% 464C…464C是数据.
% 33 是这个记录的校验和.
%
% 扩展线性地址记录(HEX386)
% 扩展线性地址记录也叫作32位地址记录或HEX386记录.这些记录包含数据地址的高16位.扩展线性地址记录总是有两个数据字节,外观如下:
% :02000004FFFFFC
% 其中:
% 02 是这个记录当中数据字节的数量.
% 0000 是地址域,对于扩展线性地址记录,这个域总是0000.
% 04 是记录类型 04(扩展线性地址记录)
% FFFF 是地址的高16位.
% FC 是这个记录的校验和,计算方法如下:
% 01h + NOT(02h + 00h + 00h + 04h + FFh + FFh).
% 当一个扩展线性地址记录被读取,存储于数据域的扩展线性地址被保存,它被应用于从Intel HEX文件读取来的随后的记录.线性地址保持有效,直到它被另外一个扩展地址记录所改变.
% 通过把记录当中的地址域与被移位的来自扩展线性地址记录的地址数据相加获得数据记录的绝对存储器地址.
% 以下的例子演示了这个过程..
% 来自数据记录地址域的地址 2462
% 扩展线性地址记录的数据域 + FFFF
% ------------
% 绝对存储器地址 FFFF2462
%
% 扩展段地址记录(HEX86)
% 扩展段地址记录也叫HEX86记录,它包括4-19位数据地址段.扩展段地址记录总是有两个数据字节,外观如下:
% :020000021200EA
% 其中:
% 02 是记录当中数据字节的数量.
% 0000 是地址域.对于扩展段地址记录,这个域总是0000.
% 02 是记录类型 02(扩展段地址记录)
% 1200 是地址段.
% EA 是这个记录的校验和,计算方法如下:
% 01h + NOT(02h + 00h + 00h + 02h + 12h + 00h).
% 当一个扩展段地址记录被读取,存储于数据域的扩展段地址被保存,它被应用于从Intel HEX文件读取来的随后的记录.段地址保持有效,直到它被另外一个扩展地址记录所改变.
% 通过把记录当中的地址域与被移位的来自扩展段地址记录的地址数据相加获得数据记录的绝对存储器地址.
% 以下的例子演示了这个过程..
% 来自数据记录地址域的地址 2462
% 扩展段地址记录数据域 + 1200
% ---------
% 绝对存储器地址 00014462
%
% 文件结束(EOF)记录
% Intel HEX文件必须以文件结束(EOF)记录结束.这个记录的记录类型域的值必须是01.EOF记录外观总是如下:
% :00000001FF
% 其中:
% 00 是记录当中数据字节的数量.
% 0000 是数据被下载到存储器当中的地址.在文件结束记录当中地址是没有意义被忽略的.0000h是典型的地址.
% 01 是记录类型 01(文件结束记录)
% FF 是这个记录的校验和,计算方法如下:
% 01h + NOT(00h + 00h + 00h + 01h).
%
% Intel HEX文件例子:
% 下面是一个完整的Intel HEX文件的例子:
% :10001300AC12AD13AE10AF1112002F8E0E8F0F2244
% :10000300E50B250DF509E50A350CF5081200132259
% :03000000020023D8
% :0C002300787FE4F6D8FD7581130200031D
% :10002F00EFF88DF0A4FFEDC5F0CEA42EFEEC88F016
% :04003F00A42EFE22CB
% :00000001FF
%
%
%
% 附:英文原文
%
% QUESTION
% What is the Intel HEX file format?
% ANSWER
% The Intel HEX file is an ASCII text file with lines of text that follow the
% Intel HEX file format. Each line in an Intel HEX file contains one HEX record.
% These records are made up of hexadecimal numbers that represent machine
% language code and/or constant data. Intel HEX files are often used to transfer
% the program and data that would be stored in a ROM or EPROM. Most EPROM
% programmers or emulators can use Intel HEX files.
% Record Format
% An Intel HEX file is composed of any number of HEX records. Each record is made
% up of five fields that are arranged in the following format:
% :llaaaatt[dd...]cc
% Each group of letters corresponds to a different field, and each letter
% represents a single hexadecimal digit. Each field is composed of at least two
% hexadecimal digits-which make up a byte-as described below:
% : is the colon that starts every Intel HEX record.
% ll is the record-length field that represents the number of data bytes (dd) in
% the record.
% aaaa is the address field that represents the starting address for subsequent
% data in the record.
% tt is the field that represents the HEX record type, which may be one of the
% following:
% 00 - data record
% 01 - end-of-file record
% 02 - extended segment address record
% 04 - extended linear address record
% dd is a data field that represents one byte of data. A record may have multiple
% data bytes. The number of data bytes in the record must match the number
% specified by the ll field.
% cc is the checksum field that represents the checksum of the record. The
% checksum is calculated by summing the values of all hexadecimal digit pairs in
% the record modulo 256 and taking the two's complement.
% Data Records
% The Intel HEX file is made up of any number of data records that are terminated
% with a carriage return and a linefeed. Data records appear as follows:
% :10246200464C5549442050524F46494C4500464C33
% where:
% 10 is the number of data bytes in the record.
% 2462 is the address where the data are to be located in memory.
% 00 is the record type 00 (a data record).
% 464C...464C is the data.
% 33 is the checksum of the record.
% Extended Linear Address Records (HEX386)
% Extended linear address records are also known as 32-bit address records and
% HEX386 records. These records contain the upper 16 bits (bits 16-31) of the
% data address. The extended linear address record always has two data bytes and
% appears as follows:
% :02000004FFFFFC
% where:
% 02 is the number of data bytes in the record.
% 0000 is the address field. For the extended linear address record, this field
% is always 0000.
% 04 is the record type 04 (an extended linear address record).
% FFFF is the upper 16 bits of the address.
% FC is the checksum of the record and is calculated as
% 01h + NOT(02h + 00h + 00h + 04h + FFh + FFh).
% When an extended linear address record is read, the extended linear address
% stored in the data field is saved and is applied to subsequent records read
% from the Intel HEX file. The linear address remains effective until changed by
% another extended address record.
% The absolute-memory address of a data record is obtained by adding the address
% field in the record to the shifted address data from the extended linear
% address record. The following example illustrates this process..
% Address from the data record's address field 2462
% Extended linear address record data field FFFF
% --------
% Absolute-memory address FFFF2462
% Extended Segment Address Records (HEX86)
% Extended segment address records-also known as HEX86 records-contain bits 4-19
% of the data address segment. The extended segment address record always has two
% data bytes and appears as follows:
% :020000021200EA
% where:
% 02 is the number of data bytes in the record.
% 0000 is the address field. For the extended segment address record, this field
% is always 0000.
% 02 is the record type 02 (an extended segment address record).
% 1200 is the segment of the address.
% EA is the checksum of the record and is calculated as
% 01h + NOT(02h + 00h + 00h + 02h + 12h + 00h).
% When an extended segment address record is read, the extended segment address
% stored in the data field is saved and is applied to subsequent records read
% from the Intel HEX file. The segment address remains effective until changed by
% another extended address record.
% The absolute-memory address of a data record is obtained by adding the address
% field in the record to the shifted-address data from the extended segment
% address record. The following example illustrates this process.
% Address from the data record's address field 2462
% Extended segment address record data field 1200
% --------
% Absolute memory address 00014462
% End-of-File (EOF) Records
% An Intel HEX file must end with an end-of-file (EOF) record. This record must
% have the value 01 in the record type field. An EOF record always appears as
% follows:
% :00000001FF
% where:
% 00 is the number of data bytes in the record.
% 0000 is the address where the data are to be located in memory. The address in
% end-of-file records is meaningless and is ignored. An address of 0000h is
% typical.
% 01 is the record type 01 (an end-of-file record).
% FF is the checksum of the record and is calculated as
% 01h + NOT(00h + 00h + 00h + 01h).
% Example Intel HEX File
% Following is an example of a complete Intel HEX file:
% :10001300AC12AD13AE10AF1112002F8E0E8F0F2244
% :10000300E50B250DF509E50A350CF5081200132259
% :03000000020023D8
% :0C002300787FE4F6D8FD7581130200031D
% :10002F00EFF88DF0A4FFEDC5F0CEA42EFEEC88F016
% :04003F00A42EFE22CB
% :00000001FF
clear ;
clc;
data=1:16;%data need to be writen into the mif file
fh=fopen('E:Hex1.hex','w');
l_data=length(data);
for j="1:l"_data
adr="dec2hex"(j-1,4);%4位十六进制表示的地址
data_hex=dec2hex(data(j),4);%4位十六进制表示的数据
data_H=floor(data(j)/2^8);%数据十六进制高两位
data_L=data(j)-data_H*2^8;%数据十六进制低两位
adr_H=floor((j-1)/2^8);%地址十六进制高两位
adr_L=(j-1)-adr_H*2^8;%地址十六进制低两位
idetify_word=mod(2^8-mod(2+adr_H+adr_L+data_H+data_L,2^8),2^8);%十进制表示的校验位,外围mod函数是以防里面的mod函数结果为0
idetify_word_hex=dec2hex(idetify_word,2);%十六进制表示的校验位
fprintf(fh,[':02',adr,'00',data_hex,idetify_word_hex,' ']);%产生HEX码(end-1:end)
end
fprintf(fh,':00000001FF');
fclose(fh);
文章评论(0条评论)
登录后参与讨论