快考试了,老师没有多说什么,他只是给我们讲了讲近三年试题情况,并详细讲述了两道题目:一道递归,另一道回溯。不过今天不知怎么回事,我感觉特别累,也特别想睡觉。所以没什么感觉。这里就不说了,两道题目都有的,递归那题是2001年最后一题,回溯是在《程序员教程》P416,老师说高程曾经考过,有兴趣自己看看也能看懂的。老师特意为我们出了一份下午试题,我现在把他拿出来让大家参考参考。到这里,就到这里!
程序员考试下午试题(模拟)
一、把一个字符串插入到另一个字符串的某个位置(指元素个数)之后
char *insert(char *s,char *t,int position)
{ int i;
char *target;
if(position>strlen(t)) printf("error");
else
{ for (i=0;i< (1) ;i++)
{ if (i target=s;
else
{ if(i< (2) )
target=t;
else (3) ;
}
}
}
return garget;
}
二、辗转相除法求两个正整数的最大公约数
int f(int a,int b)
{ if (a==b) (4) ;
else
{ if (a>b) return f(a-b,b);
else (5) ;
}
}
三、求一个链表的所有元素的平均值
typedef struct { int num;
float ave;
}Back;
typedef struct node{ float data;
struct node *next;
} Node;
Back *aveage(Node *head)
{ Back *p,*q;
p=(Back *)malloc(sizeof(Back));
if (head==NULL)
{ p->num=0;
p->ave=0; }
else
{ (6) ;
p->num=q->num+1;
(7) ; }
retuen p;
}
main()
{ Node *h; Back *p;
h=create(); /*建立以h为头指针的链表*/
if (h==NULL) printf("没有元素");
else { p="aveage"(h);
printf("链表元素的均值为:%6f",p->ave);
}
}
四、希尔排序
已知待排序序列data[n];希尔排序的增量序列为d[m],其中d[]序列降序排列,且d[m-1]=1。其方法是对序列进行m趟排序,在第i趟排序中,按增量d把整个序列分成d个子序列,并按直接插入排序的方法对每个子序列进行排序。
希尔排序的程序为:
void shellsort(int *data,int *d,int n,int m)
{ int i,j;
for (i=0;i for (j=0; (1) ;j++)
shell( (2) );
}
void shell(int *data,int d,int num,int n)
{ int i,j,k,temp;
for (i=1; (3) ;i++)
{ j="0";
temp=data[j+i*d];
while ((j(4) ))
j++;
for (k=j;k data[k+1]=data[k];
(5) ;
(6) }
}
五、求树的宽度
所谓宽度是指在二叉树的各层上,具有结点数最多的那一层上的结点总数。本算法是按层次遍历二叉树,采用一个队列q,让根结点入队列,最后出队列,若有左右子树,则左右子树根结点入队列,如此反复,直到队列为空。
int Width(BinTree *T)
{ int front="-1",rear=-1; /* 队列初始化*/
int flag="0",count=0,p;/*p用于指向树中层的最右边的结点,flag记录层中结点数的最大值。*/
if(T!=Null)
{ rear++; (1) ; flag="1"; p="rear";
}
while( (2) )
{ front++;
T=q[front];
if(T->lchild!=Null)
{ rear++; (3) ; count++; } //
if(T->rchild!=Null)
{ rear++; q[rear]=T->rchild; (4) ; }
if(front==p) /* 当前层已遍历完毕*/
{ if( (5) ) flag="count"; count="0"; //
p=rear; /* p指向下一层最右边的结点*/
}
}
return(flag);
}
六、区间覆盖
设在实数轴上有n个点(x0,x1,……,xn-2,xn-1),现在要求用长度为1的单位闭区间去覆盖这n个点,则需要多少个单位闭区间。
int cover(float x[ ], int num)
{ float start[num],end[num];
int i ,j ,flag, count="0";
for (i=0;i { flag="1";
for (j=0;j< (1) ;j++)
{ if ((start[j]>x)&&(end[j]-x<=1)) (2) ;
else if ( (3) ) end[j]=x;
else if ((x>start[j])&&(x if (flag) break;
}
if ( (4) )
{ end[count]=x; (5); count++; }
}
return count-1;
}
start[count]=x
七、围棋中的提子
在围棋比赛中,某一方(假设为黑方)在棋盘的某个位置(i,j)下子后,有可能提取对方(白方的一串子)。以W[19][19]表示一个棋盘,若W[j]=0表示在位置(i,j)上没有子,W[j]=1表示该位置上的是黑子,W[j]=-1表示该位置上是白子。可以用回溯法实现提子算法。
下列程序是黑棋(tag=1)下在(i,j)位置后判断是否可以吃掉某些白子,这些确定可以提掉的白子以一个线性表表示。
问题相应的数据结构有:
#define length 19 /*棋盘大小*/
#define max_num 361 /*棋盘中点的数量*/
struct position { int row; int col;
}; /*棋子位置*/
struct killed { struct position data[max_num]; int num;
} *p; /*存储可以吃掉的棋子位置*/
struct stack { struct position node[max_num]; int top;
}; /*栈*/
int w[length][length]; /*棋盘中双方的棋子分布*/
int visited[length][length]; /*给已搜索到的棋子位置作标记,初值为0,搜索到后为1*/
struct killed *kill(int w[length][length],int r,int c,int tag)
{ struct killed *p;
struct position *s;
struct stack S;
for (i=0;i for (j=0;j (1) ;
S.top=-1; p->num=-1;
if (w[r-1][c]==tag*(-1)) s->row=r-1; s->col=c;
else if (w[r+1][c]==tag*(-1)) s->row=r+1; s->col=c;
else if (w[r][c-1]==tag*(-1)) s->row=r; s->col=c-1;
else if (w[r][c+1]==tag*(-1)) s->row=r; s->col=c+1;
else p->len=0; return p;
push(S,s); visited[s->row][s->col]=1;
flag=search(s,tag);
while ( (2))
{ push(S,s); visited[s->row][s->col]=1;
(3);
}
while (S->top>=0)
{ pop(S);
(4);
flag=search(s,tag);
while (flag)
{ push(S,s);
visit(s);
flag=search(s);
}
}
}
void push( struct stack *S, struct position *s)
{ S->top++;
S->node[S->top].row=s->row;
S->node[S->top].col=s->col;
p->num++;
p->data[p->num].row=s->row;
p->data[p->num].col=s->col;
}
void pop(struct stack *S)
{ S->top--;
}
struct position *gettop(struct stack *S)
{ struct position *s;
s->row=S->data[S->top].row;
s->row=S->data[S->top].row;
return s;
}
int search(struct position *s,int tag)
{ int row,col;
row=s->row; col="s-">col;
if (W[row+1][col]=(-1)*tag)&&(!visited[row+1][col])
{ s->row=row+1;s->col=col; return 1;}
if (W[row-1][col]=(-1)*tag)&&(!visited[row-1][col])
{ s->row=row-1;s->col=col; return 1;}
if (W[row][col+1]=(-1)*tag)&&(!visited[row][col+1])
{ s->row=row;s->col=col+1; return 1;}
if (W[row][col-1]=(-1)*tag)&&(!visited[row][col-1])
{ s->row=row;s->col=col-1; return 1}
(5);
}
答案:
(1)strlen(s)+strlen(t) (2)position+strlen(t) (3)target=s[i-strlen(t)]
(4)return a (5)return f(a,b-a)
(6)q=aveage(head->next) (7)p->ave=(head->data+q->ave*q->num)/p->num
(1)j(1)q[rear]=T (2)front
lchild (4)count++ (5)flag(1)count (2)(x>end[j])&&(x-start[j]<=1) (3)start[j]=x (4)!flag (5)
(1)visited[j]=0 (2)flag (3)flag=search(s,tag) (4)s=gettop(S) (5)return 0
课已全部授完,也该收笔了.望对大家有所启发吧!
文章评论(0条评论)
登录后参与讨论