一、SMT设计程序
新产品在开发过程中往往分为方案设计阶段、初步设计阶段、工程设计阶段、样板和试生产阶段、批量生产阶段等几个环节。
1、方案设计阶段;新产品经过调研、分析与立项过程中,产品设计师和工艺师分别规划产品功能、外观造型设计和应该采用的工艺方法和建议。对于SMT印制板的设计,提供设计人员应采用的标准和技术要求。
2、初步设计阶段;在完成造型设计和结构设计的基础上,规划出SMT印制板外型图,该图主要规划出印制板的长度和厚度要求、与结构件装配孔大小位置、应预留边缘尺寸等,使电路设计师能在有效范围内进行布线设计。
3、工程设计阶段;电路设计师过程中,依据各种标准和手册进行详细布线,实现功能。
4、样机与试生产阶段:根据设计资料加工SMT印制板,验证设计功能是否达到与是否满足工序要求
5、批量生产阶段,在SMT印制板设计的各个阶段设计师应经常对自己的设计进行自我审查,工艺师也应经常进行复审,提出建议和解决办法。而在上述各阶段中以工程设计阶段完成后的设计师的自我审查与工艺师的复审最为重要和关键,忽视了这一环节将给试生产和批量生产带来不必要的损失和困难,下面详细介绍此阶段自审与复审项目和内容和一些基本设计原则。
二、设计完成后设计质量的审核
SMT印制板详细阶段设计完成后,设计者按以下条目进行一次全面的自我审查非常必要,有助于减少一些显而易见的问题,工艺员或专业工程人员进行复审将尽可能地提高设计质量。
1) 审核PCB设计后的组装形式。
从加工工艺的过程考虑,优化工序环节不但可以降低生产成本、而且提高了产品的质量。因此设计者应考虑SMT板型设计是否最大限度地减少组装流程的问题,即多层板或双面板的设计能否用单面板代替?PCB每一面是否能用一种组装流程完成?能否最大限度地不用手左焊?使用的插装元件能否用贴片元件代替?
2) 审核PCB工艺夹持边和定位孔的设计。
因PCB组装过程中,PCB应留出一定的边缘便于设备的夹持。一般沿PCB焊接传送方向两条边留出4mm夹持边,在这个范围内不容许布放元器件和焊盘,遇有高密度板无法留出夹持边的,可设计工艺边或采用拼板形式焊后切去。有些型号贴片机还需设置定位孔,那么在定位孔周围1mm范围内也不允许贴片。
3) 审核PCB设计定位基准符号、尺寸。
(a) 对于采用光学基准符号定位的贴片设备必须设计出光学定位基准符号。
(b) 基准符号的应用有三种情况,一是用于PCB的整板定位;二是用于细间距器件的定位,对于这种情况原则上间距小于0.65mm的QFP均应在其对角位置设置定位基准符号;三是用于拼版PCB子板的定位。基准符号成对使用,布置于定位要素的对角处。
(c) 基准符号种类和尺寸
(d)基准符号材料为覆铜箔或镀锡铅合金覆铜箔。考虑到材料颜色与环境的反差,通常留出比基准符号大1.5mm的无阻焊区。
4)审核SMT印制板的布线设计:
SMT印制板的布线密度设计原则;在组装密度许可情况下,尽量选用低密度布线设计,以提高无缺陷可靠性的制造能力。
a) 在元器件尺寸较大,而布线密度较低时,可适当加宽印制导线及其间距,走线间距一般定为0.3mm(12mil),并尽量把不用的地方合理地作为接地和电源用,对于高频信号最好用地线屏蔽,提高高频电路的屏蔽效果。在大面积使用地线布置时,地线应设计成网格形式,避免在高温焊接产生应力,增加印制板变形度。
b)在双面或多层印制电路板中,相邻两层印制导线,宜相互垂直走线,或斜交、弯曲走线、力求避免相互平行走线。
c)印制导线布线图尽可能短,过孔尽可能少,特别是电子管理栅极,晶体管的堪极和高频回路更应注意布线要短,线路短电阻越小,干扰也越小。
d)印制电路板上同时安装模拟电路和数字电路时,宜将两种电路的地线系统完全分开,它们的供电系统同样也宜完全分开,防止它们之间的相互串扰。
e)作为高速数字电路的输入端和输出端用的印制导线,应避免相邻平行布线。必要时,在这些导线之间要加接地线。
f)印制板信号走线,尽量粗细一致,有利于阻抗的匹配,一般为0.2~0.3mm(8~12mil),对于电源线和地线应尽可能的加大,地线能排在印制板的四周对电路防护有利。
5) 审核SMT印制板的布局设计。
SMT印制板设计中SMD等元器件的布置是关系到获得稳定的焊接质量的重要保障,因此在设计和审核SMT印制板设计中注意从下面几个方面:
a)采用波峰焊接时,应尽量去除“阴影效应”即,器件的管脚方向应平行于锡流方向。
b)SMD在PCB上应均匀分布,特别是大功率器件和大质量器件必须分散布置。大功率器件如果加装散热时应排布散热器的位置和固定方式,热敏感器件应远离散热器,大质量的器件应考虑加装器件固定架或固定盘。
c)SMD在PCB上的排列,原则上应随元器件类型改变而变化,但同时SMD尽可能采取一个位向、一个间距、一个极性排列。这样有利于贴装、焊接和检测。
d)考虑到元器件制造误差、贴装误差以及检测和返修之需,相邻元器件焊盘之间间隔不能太近,建议按下述原则设计。
*PLCC、QFP、SOP、各自之间和相互之间间隙≥2.5mm。
*PLCC、QFP、SOP与chip、SOT之间间隙≥1.5mm。
*Chip、SOT各自之间和相互之间间隙≥0.7mm。
e)采用波峰焊焊接的PCB面,元器件的布局按以下要求设计
*波峰焊不适合于细间距QFP、PLCC、BGA和小间距SOP器件的焊接,也就是说在要波峰焊的PCB面尽量不要布置这类器件。
*当元件尺寸相差较大的贴片元器件相邻排列且间距较小时,较小的元器件应排在首先进入焊料波的位置。一般将PCB长尺寸边作为传送边,布局时将小元件置于它相邻大元件的同一侧。
f)插装元件布局
*元件尽可能有规则地分布排列,以得到均匀的组装密度。
*大功率元件周围不应布置热敏元件,要留有足够的距离。
*装在印制板组件上的元件不允许重叠。
*所有不绝缘的金属外壳元件,如钽电容、有金属基底的扁平组件,当它们跨越印制导线时,应当用指定材料加以绝缘,如套管和绝缘带。
*插件元件极性尽量同一方向布置。
g)在电路易扭曲变形、受力部位元件的布置应考虑PCB变形对元件可靠性的影响。
6) 审核SMT印制板过孔与焊盘的设计。
A、焊盘上原则上应尽量避免设计过孔,如果孔和焊点靠得太近,通孔由于毛细管作用可能把熔化的焊锡从元器件上吸走,造成焊点不饱满或虚焊。第六届装联学会论文集中,有人尝试直接在焊盘上使用了过孔设计,原因是元器件密度较高,是多层板,设计时过孔尽量设置在焊盘的顶端,过孔必须小于焊盘,要求过孔越小越好,最小钻孔直径控制在0.3mm喧种方式在工艺和质量控制手段上相对要复杂一些,因此如果在条件许可的情况下,仍应尽量避免在焊盘上设计过孔。
B、进行SMT印制板焊盘的设计有一些标准和资料都描述得很清楚,审核也是以这些标准为依据。但是有几个容易忽视的问题值得注意:
*SOP、 QFP、PLCC、BGA存在着英制和公制两种规格,而除了PLCC外,其它封装形式很不标准,各厂家生产的封装尺寸不完全一致。设计时,应以供应商提供的封装结构尺寸来进行设计。这就要求设计者应掌握器件供应商的资料,在电路设计工作组中,应随时更新和增补元器件材料库,保证设计者能从库中直接调用器件时不会发生记录与器件不符现象。
*当采用波峰焊接工艺时,插脚的焊盘通孔,一般应比其引脚线径大0.05-0.3mm,其焊盘的直径应不大于孔径的3倍。由于器件的生产企业的不同,批次的不同,引线管脚尺寸常有误差,往往生产中才发现有器件无法插入孔径的问题,在设计过程中是难以审核出这种问题,该问题只能在材料的入库前检验把关,因此材料检验机构应具备与设计同样的详细器件资料。
C、SMT印制板可测试性焊盘的设计的审核
在规模生产中,SMT印制板的测试主要采用ICT方式,在使用针床接触式测试时,应注意审核的主要内容:
*定位孔设计的尺寸和精度要求,在印制板规划图中已规划出定位孔尺寸和精度,设计中定位孔按对角设计,孔径应符合所选ICT设备定位销的尺寸及公差要求。在印制板面积较大时,最好设计三个定位孔,呈三角形排列。
*测试点的焊盘尺寸应大于0.9或1 mm。
*采用真空媳妇,针床接触测试方式时,尽量将需要测试点的焊盘设计在一个平面,可以减少测试工序,测试点将测试点均匀地分布在印制板上,保持板面受力均匀。
*测试点焊盘的位置应布置在网格上。
7)审核设计输出资料的齐套性
在进行完资料检查后,SMT印制板的设计者应向制造商提供以下磁盘文件和说明文件:
(1)PCB制造用主要菲林文件,包括每层布线图、字符图、阻焊图。
(2)钻孔图,不需孔金属化的要标明。
(3)外形图(包括定位孔尺寸及位置要求。)
说明性文件应包括以下内容:
(1) 基板材料,最终厚度及公差要求
(2) 镀层厚度,孔金属化最终尺寸要求
(3) 丝印油墨材料及颜色
(4) 阻焊膜材料及厚度
(5) PCB拼版图纸
(6) 其它必须要说明的特殊要求
三、SMT印制板的设计质量审核质量记录
在SMT设计至加工过程中,任何一个环节出现的问题均有可能造成产品质量的降低,因此在质量控制中应有一套严谨的质量保障体系。印制板的设计人员首先应明确质量是关系到产品质量的前提,完成功能的设计并不意味任务的结束,他仍需组织试制样机评审、设计的更改与完善直至交付批量生产,在这些过程中质量记录是很重要的信息也是设计者改进和依据,它一直贯穿于产品的设计至生产过程中。深圳中兴通讯股份有限公司是国内电讯企业中首家获得ISO9001质量认证单位,它有一套完善的设计质量控制程序,公以SMT印制工程设计后的审核程序为例说明:
在SMT印制板完成工程设计后,要求设计人员首先应完成电性能的验证,同时按下述内容自审理布板的内容:
1)SMT板型设计是否考虑了最大限度地减少组装流程的问题,即双面板的设计能否用单面板代替?PCB每一面是否能用一种组装流程完成?能否最大限度地不用手工焊?
2)PCB是否留出工艺传送边?
3)PCB是否设计出定位基准符号?尺寸是否正确?定位基准符号周围是否有1mm~1.5mm无阻焊区?
4)PCB非接地安装孔是否标明非金属化?
5)SMD的布局是否均匀?大元件是否分散布局?
6)SMD之间的间距是否利于检测和修补?
7)SMD的排布是否按照一个极性、一个引线引向的原则排列?
8)对于采用波峰焊的PCB面上,元器件引线的排列是否严格按照一个引线位向排列,一大一小相邻很近元件的排列是否利于消除遮蔽现象?
9)PCB上SMD元件引线与焊盘尺寸是否一致?
10)轴向插装元件立式安装时的插孔跨距是否大小合适?
11)径向插装元件插孔跨距是否与元件引线中心距一致?
12)相邻插装元件之间的间距是否利于手工插装作业?
13)每个插装元件安装空间是否足够?
14)PCB的元件标识符是否易于看到?有极向元件极性是否标出?IC第一脚位置是否标出?
15)SMD焊盘与引线的连接、SMD焊盘与导通孔的连接是否符合工艺要求?
16)测试焊盘是否考虑?
17)阻焊膜是否将不需要焊的金属导体全部覆盖?
18)PCB安装时,是否有导电地方同机架相碰?
19)PCB外形形状和尺寸是否与结构件设计一致?
20)PCB上接插座位置是否利于布线和插拔?
21)PCB布线密度是否满足电气性能要求?
22)小尺寸板是否考虑了拼版制造?
上述内容经过设计自审后,一般能避免许多常见问题的出现。设计资料交由工艺工程人员进行复审,复审的内容与设计自审的内容相似,在审核过程中工艺工程人员逐项完成印制板的设计审核,并在《印制板设计工艺联络单》中记录审核过程中的质量问题,该记录将作为设计者更改依据,也作为生产中跟踪生产效果和质量状态。
用户1053025 2006-10-23 11:10