京东自营购买:请点击这里
申请方法:
1、在评测中心,点击“立即申请”并提交相关资料。
当前,ChatGPT和自动驾驶等技术正在为人类社会带来巨大的生产力变革,其中基于深度学习和增强学习的AI计算扮演着至关重要的角色。新的计算范式需要创新的芯片架构设计,这正面临新的挑战。本书从神经网络的分析出发,总结和提炼了AI加速器架构设计中常见的难点,以及解决这些难点的技术、方法和思想,是AI软硬件架构师、设计师非常宝贵的参考资料。
本书是一本讲解NPU硬件架构设计与技术实现的著作。作者将自己在CPU、GPU和NPU领域15年的软硬件工作经验融会贯通,将四代NPU架构设计经验融为一体,将端侧和云侧NPU架构合二为一,总结并提炼出本书内容。本书主要讨论神经网络硬件层面,尤其是芯片设计层面的内容,主要包含神经网络的分析、神经网络加速器的设计以及具体实现技术。通过阅读本书,读者可以深入了解主流的神经网络结构,掌握如何从零开始设计一个能用、好用的产品级加速器。
通过阅读本书,你将:
l 透彻理解与深度学习相关的机器学习算法及其实现
l 学会主流图像处理领域神经网络的结构
l 掌握加速器运算子系统和存储子系统的设计
l 摸清加速器设计中遇到的具体问题及其解决方法
l 了解NPU架构需要考虑的控制通路和数据通路
从算法角度看,神经网络分Training(训练)和Inference(推理)两个过程,本书主要讨论Inference过程。从技术类别看,本书主要讨论神经网络硬件,尤其是芯片设计层面的内容,如何训练出优秀的模型、如何设计神经网络加速器的驱动程序和编译器等内容均非本书重点。
本书内容主要分三部分:神经网络的分析、神经网络加速器的设计及具体的实现技术。通过阅读本书,读者可以深入了解主流的神经网络结构,掌握如何从零开始设计一个能用、好用的产品级加速器。
作者:甄建勇 王路业
地平线BPU首席架构师/英伟达前高级架构师15年经验总结
图解NPU算法、架构与实现,从零设计产品级加速器