tag 标签: led子系统

相关博文
  • 热度 3
    2023-5-10 07:03
    1526 次阅读|
    0 个评论
    二、LED子系统——硬件驱动层 上篇文章我们了解了子系统的框架,下面我们来分析驱动框架中每层的实现以及作用。 在 LED 子系统中,硬件驱动层相关文件在包括: kernel/drivers/leds/ 目录下,其主要的函数有: led-gpio.c 、 led-xxx.c ,其中 led-gpio.c 为通用的平台驱动程序, led-xxx.c 为不同厂家提供的平台驱动程序。 我们在这里主要分析 led-gpio.c 1、gpio _ led _ probe分析 打开该文件,直接找到加载驱动的入口函数 gpio_led_probe 1.1 相关数据结构 1.1.1 gpio _ led _ platform_data struct gpio_led_platform_data { int num_leds ; const struct gpio_led * leds ; ​ #define GPIO_LED_NO_BLINK_LOW 0 /* No blink GPIO state low */ #define GPIO_LED_NO_BLINK_HIGH 1 /* No blink GPIO state high */ #define GPIO_LED_BLINK 2 /* Please, blink */ gpio_blink_set_t gpio_blink_set ; }; 结构体名称 : gpio_led_platform_data 文件位置 : include/linux/leds.h 主要作用 : LED 的平台数据,用于对 LED 硬件设备的统一管理 这个结构体用于父节点向子节点传递的数据时使用 1.1.2 gpio _ leds _ priv struct gpio_leds_priv { int num_leds ; struct gpio_led_data leds 根据获取的 num_leds 个数,分配对应的空间,来初始化相关数据 1.2 实现流程 static int gpio_led_probe ( struct platform_device * pdev ) { struct gpio_led_platform_data * pdata = dev_get_platdata ( & pdev dev ); // 检索设备的平台数据 struct gpio_leds_priv * priv ; int i , ret = 0 ; ​ if ( pdata && pdata num_leds ) { // 判断平台数据LED数量 priv = devm_kzalloc ( & pdev dev , sizeof_gpio_leds_priv ( pdata num_leds ), GFP_KERNEL ); if ( ! priv ) return - ENOMEM ; ​ priv num_leds = pdata num_leds ; for ( i = 0 ; i < priv num_leds ; i ++ ) { ret = create_gpio_led ( & pdata leds , & priv leds , & pdev dev , NULL , pdata gpio_blink_set ); if ( ret < 0 ) return ret ; } } else { priv = gpio_leds_create ( pdev ); // 创建LED设备 if ( IS_ERR ( priv )) return PTR_ERR ( priv ); } ​ platform_set_drvdata ( pdev , priv ); ​ return 0 ; } 函数介绍 : gpio_led_probe 是 LED 驱动的入口函数,也是 LED 子系统中,硬件设备和驱动程序匹配后,第一个执行的函数。 实现思路 : 通过 dev_get_platdata 检索设备的平台数据,如果平台数据中的 LED 数量大于零,则使用 devm_kzalloc 为其分配内存空间,并且使用 create_gpio_led 进行初始化 如果平台数据不存在或 LED 的数量为零,则使用 gpio_leds_create 创建LED。 最后,设置驱动程序数据,并返回0,表示操作成功。 数据结构 :该函数主要包括了两个数据结构 gpio_led_platform_data 和 gpio_leds_priv 2、gpio _ leds _ create分析 2.1 相关数据结构 2.1.1 gpio_led /* For the leds-gpio driver */ struct gpio_led { const char * name ; // LED名称 const char * default_trigger ; // 默认触发类型 unsigned gpio ; // GPIO编号 unsigned active_low : 1 ; // 低电平有效 unsigned retain_state_suspended : 1 ; unsigned panic_indicator : 1 ; unsigned default_state : 2 ; // 默认状态 unsigned retain_state_shutdown : 1 ; /* default_state should be one of LEDS_GPIO_DEFSTATE_(ON|OFF|KEEP) */ struct gpio_desc * gpiod ; // GPIO Group }; 结构体名称 : gpio_led 文件位置 : include/linux/leds.h 主要作用 : LED 的硬件描述结构,包括名称, GPIO 编号,有效电平等等信息。 该结构体的信息大多由解析设备树获得,将设备树中 label 解析为 name , gpios 解析为 gpiod , linux,default-trigger 解析为 default_trigger 等 2.1.2 gpio _ led _ data struct gpio_led_data { struct led_classdev cdev ; // LED Class struct gpio_desc * gpiod ; // GPIO description u8 can_sleep ; u8 blinking ; // 闪烁 gpio_blink_set_t platform_gpio_blink_set ; // 闪烁设置 }; 结构体名称 : gpio_led_data 文件位置 : drivers/leds/leds-gpio.c 主要作用 : LED 相关数据信息,主要在于 led_classdev ,用于注册设备节点信息 由设备树解析出来的 gpio_led ,然后将部分属性赋值到 gpio_led_data 中,并且初始化 led_classdev 相关属性,并且实现 led_classdev 结构体中的部分函数。 2.2 实现流程 static struct gpio_leds_priv * gpio_leds_create ( struct platform_device * pdev ) { struct device * dev = & pdev dev ; struct fwnode_handle * child ; struct gpio_leds_priv * priv ; int count , ret ; ​ count = device_get_child_node_count ( dev ); // 获取子节点数量 if ( ! count ) return ERR_PTR ( - ENODEV ); ​ priv = devm_kzalloc ( dev , sizeof_gpio_leds_priv ( count ), GFP_KERNEL ); if ( ! priv ) return ERR_PTR ( - ENOMEM ); ​ device_for_each_child_node ( dev , child ) { struct gpio_led_data * led_dat = & priv leds ; // 与gpio_leds_priv结构体关联 struct gpio_led led = {}; const char * state = NULL ; struct device_node * np = to_of_node ( child ); ​ ret = fwnode_property_read_string ( child , "label" , & led . name ); // 读设备树属性,赋值gpio_led结构体 if ( ret && IS_ENABLED ( CONFIG_OF ) && np ) led . name = np name ; if ( ! led . name ) { fwnode_handle_put ( child ); return ERR_PTR ( - EINVAL ); } ​ led . gpiod = devm_fwnode_get_gpiod_from_child ( dev , NULL , child , GPIOD_ASIS , led . name ); if ( IS_ERR ( led . gpiod )) { fwnode_handle_put ( child ); return ERR_CAST ( led . gpiod ); } ​ fwnode_property_read_string ( child , "linux,default-trigger" , & led . default_trigger ); ​ if ( ! fwnode_property_read_string ( child , "default-state" , & state )) { if ( ! strcmp ( state , "keep" )) led . default_state = LEDS_GPIO_DEFSTATE_KEEP ; else if ( ! strcmp ( state , "on" )) led . default_state = LEDS_GPIO_DEFSTATE_ON ; else led . default_state = LEDS_GPIO_DEFSTATE_OFF ; } ​ if ( fwnode_property_present ( child , "retain-state-suspended" )) led . retain_state_suspended = 1 ; if ( fwnode_property_present ( child , "retain-state-shutdown" )) led . retain_state_shutdown = 1 ; if ( fwnode_property_present ( child , "panic-indicator" )) led . panic_indicator = 1 ; ​ ret = create_gpio_led ( & led , led_dat , dev , np , NULL ); // 将gpio_led结构体、gpio_led_data关联起来 if ( ret < 0 ) { fwnode_handle_put ( child ); return ERR_PTR ( ret ); } led_dat cdev . dev of_node = np ; priv num_leds ++ ; } ​ return priv ; } 函数介绍 : gpio_leds_create 主要用于创建 LED 设备。 实现思路 : 通过 device_get_child_node_count 获取设备树中 LED 子节点的数量,根据获取到的子节点数量,分配 LED 设备对应的内存空间 通过 device_for_each_child_node 遍历每个子节点,并为每个子节点创建对应的 LED 设备 对于每个子节点,使用 fwnode_property_read_string 接口,读取设备树中相关的属性信息,如: label 、 linux,default-trigger 等,将这些信息赋值给 gpio_led 结构体中 最后将遍历的每个 LED ,调用 create_gpio_led 进行设备的创建 3、create _ gpio _ led分析 3.1 相关数据结构 3.1.1 led_classdev 该数据结构属于核心层,在硬件驱动层需要与其进行关联,遂在此介绍。 struct led_classdev { const char * name ; enum led_brightness brightness ; enum led_brightness max_brightness ; int flags ; ​ /* Lower 16 bits reflect status */ #define LED_SUSPENDED BIT(0) #define LED_UNREGISTERING BIT(1) /* Upper 16 bits reflect control information */ #define LED_CORE_SUSPENDRESUME BIT(16) #define LED_SYSFS_DISABLE BIT(17) #define LED_DEV_CAP_FLASH BIT(18) #define LED_HW_PLUGGABLE BIT(19) #define LED_PANIC_INDICATOR BIT(20) #define LED_BRIGHT_HW_CHANGED BIT(21) #define LED_RETAIN_AT_SHUTDOWN BIT(22) ​ /* set_brightness_work / blink_timer flags, atomic, private. */ unsigned long work_flags ; ​ #define LED_BLINK_SW 0 #define LED_BLINK_ONESHOT 1 #define LED_BLINK_ONESHOT_STOP 2 #define LED_BLINK_INVERT 3 #define LED_BLINK_BRIGHTNESS_CHANGE 4 #define LED_BLINK_DISABLE 5 ​ /* Set LED brightness level * Must not sleep. Use brightness_set_blocking for drivers * that can sleep while setting brightness. */ void ( * brightness_set )( struct led_classdev * led_cdev , enum led_brightness brightness ); /* * Set LED brightness level immediately - it can block the caller for * the time required for accessing a LED device register. */ int ( * brightness_set_blocking )( struct led_classdev * led_cdev , enum led_brightness brightness ); /* Get LED brightness level */ enum led_brightness ( * brightness_get )( struct led_classdev * led_cdev ); ​ /* * Activate hardware accelerated blink, delays are in milliseconds * and if both are zero then a sensible default should be chosen. * The call should adjust the timings in that case and if it can't * match the values specified exactly. * Deactivate blinking again when the brightness is set to LED_OFF * via the brightness_set() callback. */ int ( * blink_set )( struct led_classdev * led_cdev , unsigned long * delay_on , unsigned long * delay_off ); ​ struct device * dev ; const struct attribute_group ** groups ; ​ struct list_head node ; /* LED Device list */ const char * default_trigger ; /* Trigger to use */ ​ unsigned long blink_delay_on , blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; int new_blink_brightness ; void ( * flash_resume )( struct led_classdev * led_cdev ); ​ struct work_struct set_brightness_work ; int delayed_set_value ; ​ #ifdef CONFIG_LEDS_TRIGGERS /* Protects the trigger data below */ struct rw_semaphore trigger_lock ; ​ struct led_trigger * trigger ; struct list_head trig_list ; void * trigger_data ; /* true if activated - deactivate routine uses it to do cleanup */ bool activated ; #endif ​ #ifdef CONFIG_LEDS_BRIGHTNESS_HW_CHANGED int brightness_hw_changed ; struct kernfs_node * brightness_hw_changed_kn ; #endif ​ /* Ensures consistent access to the LED Flash Class device */ struct mutex led_access ; }; 结构体名称 : led_classdev 文件位置 : include/linux/leds.h 主要作用 :该结构体所包括的内容较多,主要有以下几个功能 brightness 当前亮度值, max_brightness 最大亮度 LED 闪烁功能控制: blink_timer 、 blink_brightness 、 new_blink_brightness 等 attribute_group :创建 sysfs 文件节点,向上提供用户访问接口 由上面可知,在创建 gpio_led_data 时,顺便初始化 led_classdev 结构体,赋值相关属性以及部分回调函数,最终将 led_classdev 注册进入 LED 子系统框架中,在 sysfs 中创建对应的文件节点。 3.2 实现流程 static int create_gpio_led ( const struct gpio_led * template , struct gpio_led_data * led_dat , struct device * parent , struct device_node * np , gpio_blink_set_t blink_set ) { int ret , state ; ​ led_dat gpiod = template gpiod ; if ( ! led_dat gpiod ) { /* * This is the legacy code path for platform code that * still uses GPIO numbers. Ultimately we would like to get * rid of this block completely. */ unsigned long flags = GPIOF_OUT_INIT_LOW ; ​ /* skip leds that aren't available */ if ( ! gpio_is_valid ( template gpio )) { // 判断是否gpio合法 dev_info ( parent , "Skipping unavailable LED gpio %d (%s)\n" , template gpio , template name ); return 0 ; } ​ if ( template active_low ) flags |= GPIOF_ACTIVE_LOW ; ​ ret = devm_gpio_request_one ( parent , template gpio , flags , template name ); if ( ret < 0 ) return ret ; ​ led_dat gpiod = gpio_to_desc ( template gpio ); // 获取gpio组 if ( ! led_dat gpiod ) return - EINVAL ; } ​ led_dat cdev . name = template name ; // 赋值一些属性信息 led_dat cdev . default_trigger = template default_trigger ; led_dat can_sleep = gpiod_cansleep ( led_dat gpiod ); if ( ! led_dat can_sleep ) led_dat cdev . brightness_set = gpio_led_set ; // 设置LED else led_dat cdev . brightness_set_blocking = gpio_led_set_blocking ; led_dat blinking = 0 ; if ( blink_set ) { led_dat platform_gpio_blink_set = blink_set ; led_dat cdev . blink_set = gpio_blink_set ; } if ( template default_state == LEDS_GPIO_DEFSTATE_KEEP ) { state = gpiod_get_value_cansleep ( led_dat gpiod ); if ( state < 0 ) return state ; } else { state = ( template default_state == LEDS_GPIO_DEFSTATE_ON ); } led_dat cdev . brightness = state ? LED_FULL : LED_OFF ; if ( ! template retain_state_suspended ) led_dat cdev . flags |= LED_CORE_SUSPENDRESUME ; if ( template panic_indicator ) led_dat cdev . flags |= LED_PANIC_INDICATOR ; if ( template retain_state_shutdown ) led_dat cdev . flags |= LED_RETAIN_AT_SHUTDOWN ; ​ ret = gpiod_direction_output ( led_dat gpiod , state ); if ( ret < 0 ) return ret ; ​ return devm_of_led_classdev_register ( parent , np , & led_dat cdev ); // 将LED设备注册到子系统中 } 函数介绍 : create_gpio_led 创建 LED 设备的核心函数 实现思路 : 先通过 gpio_is_valid 接口,判断 GPIO 是否合法 将上层从设备树解析出来的信息,填充到 gpio_led_data 字段中,并且初始化部分字段,如: led_classdev 、 gpio_desc 等 填充回调函数,实现相应的动作,如: gpio_led_set 、 gpio_led_set_blocking 、 gpio_blink_set 等 最后调用 devm_of_led_classdev_register 接口,将 LED 设备注册到 LED 框架之中。 4、回调函数分析 硬件驱动层,肯定包括最终操作硬件的部分,也就是上面提到的一些回调函数,属于我们驱动工程师开发的内容。 4.1 gpio _ blink _ set static int gpio_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on, unsigned long *delay_off) { struct gpio_led_data *led_dat = cdev_to_gpio_led_data(led_cdev); blinking = 1; gpiod, GPIO_LED_BLINK, delay_on, delay_off); } 函数介绍 : gpio_blink_set 主要用于设置闪烁的时延 4.2 gpio _ led _ set 和gpio _ led _ set_blocking static inline struct gpio_led_data * cdev_to_gpio_led_data(struct led_classdev *led_cdev) { return container_of(led_cdev, struct gpio_led_data, cdev); } static void gpio_led_set(struct led_classdev *led_cdev, enum led_brightness value) { struct gpio_led_data *led_dat = cdev_to_gpio_led_data(led_cdev); int level; if (value == LED_OFF) level = 0; else level = 1; blinking) { gpiod, level, NULL, NULL); blinking = 0; } else { can_sleep) gpiod, level); else gpiod, level); } } static int gpio_led_set_blocking(struct led_classdev *led_cdev, enum led_brightness value) { gpio_led_set(led_cdev, value); return 0; } 函数介绍 : gpio_led_set 和 gpio_led_set_blocking 主要用于设置亮度,区别在于 gpio_led_set 是不可睡眠的, gpio_led_set_blocking 是可休眠的。 5、总结 上面我们了解了硬件驱动层的实现流程以及相关数据结构,总结来看: 5.1 数据结构之间的关系如下 5.2 函数实现流程如下 gpio_led_probe(drivers/leds/leds-gpio.c) gpio_leds_create create_gpio_led // 创建LED设备 devm_of_led_classdev_register 5.3 主要作用如下 从设备树获取 LED 相关属性信息,赋值给 gpio_led 结构体 将 gpio_led 、 gpio_leds_priv 、 led_classdev 等数据结构关联起来 将 LED 设备注册进入 LED 子系统中
  • 热度 31
    2014-3-1 12:34
    1233 次阅读|
    0 个评论
            Linux驱动中已经将led驱动作为一个子系统来实现了,针对Tiny210采用通用IO口来控制led的情况,linux采用platform驱动来实现led子系统,因此我们可以通过led子系统来了解一下platform驱动的框架结构和驱动移植过程应该注意的地方。 首先,我们应该找到通用IO口驱动led的platform驱动代码的位置:drivers/leds/leds-gpio.c,如图26: 图26 根据platform驱动和设备的匹配原则,我们找到driver对应的name为”leds-gpio”,如图27: 图27 其次,我们需要在板级文件(arch/arm/mach-s5pv210/mach-mini210.c)中添加一项platform device,如下: static struct gpio_led gpio_leds ,还需要添加头文件linux/leds.h,之后配置menuconfig可以将其编译为模块mini210_leds.ko。修改之后的板级文件如mach-mini210.c(附件中)。 最后,动态插入leds模块之后我们进入/sys/class/leds/led2,查看trigger的值为none,如图28: 图28 可以使用cat和echo命令修改brightness的值观察led的状态,将brightness的值改为1时,对应的led2点亮,将brightness的值改为0时,对应的led2熄灭。如图29: 图29