热度 21
2014-8-21 11:36
1813 次阅读|
0 个评论
作为电脑中必不可少的三大件之一(其余的两个是主板与CPU),内存是决定系统性能的关键设备之一,它就像一个临时的仓库,负责数据的中转、暂存…… 不过,虽然内存对系统性能的至关重要,但长期以来,DIYer并不重视内存,只是将它看作是一种买主板和CPU时顺带买的“附件”,那时最多也就注意一下 内存的速度。这种现象截止于1998年440BX主板上市后,PC66/100的内存标准开始进入普通DIYer的视野,因为这与选购有着直接的联系。一 时间,有关内存时序参数的介绍文章大量出现(其中最为著名的恐怕就是CL参数)。自那以后,DIYer才发现,原来内存也有这么多的学问。接下来,始于 2000年底/2001年初的VIA芯片组4路交错(4-Way Interleave)内存控制和部分芯片组有关内存容量限制的研究,则是深入了解内存的一个新开端。本刊在2001年第2期上也进行了VIA内存交错控 制与内存与模组结构的详细介绍,并最终率先正确地解释了这一类型交错(内存交错有多种类型)的原理与容量限制的原因。从那时起,很多关于内存方面的深入性 文章接踵而至,如果说那时因此而掀起了一股内存热并不夸张。大量的内存文章让更多的用户了解了内存,以及更深一层的知识,这对于DIY当然是一件好事情。 然而,令人遗憾的是这些所谓的内存高深技术文章有不少都是错的(包括后来的DDR与RDRAM内存的介绍),有的甚至是很低级的错误。在这近两年的时间 里,国内媒体上优秀的内存技术文章可谓是寥若晨星,有些媒体还编译国外DIY网站的大篇内存文章,但可惜的是,外国网站也不见得都是对的(这一点,似乎国 内很多作者与媒体似乎都忽视了)。就这样,虽然打开了一个新的知识领域,可“普及”的效果并不那么好,很多媒体的铁杆读者高兴地被带入内存深层世界,但也 因此被引向了新的误区。 不过,从这期间(2001年初至今)各媒体读者对这类文章的反映来看,喜欢内存技术的玩家大有人在且越来越多,这是各媒体“培养”的成果。这些用户已经不 满足如何正确的使用内存,他们更渴望深入的了解这方面原来非常贫乏的知识,这些知识可能暂时不会对他们在使用内存过程中有什么帮助,但会大大满足他们的求 知欲。在2001年初,我们揭开VIA芯片组4路交错内存控制和部分芯片组有关内存容量限制之迷时,还是主要围绕着内存使用的相关话题来展开,而且在这期 间有关内存技术的话题,《电脑高手》也都是一笔带过。但在今天,在很多人希望了解内存技术而众多媒体的文章又“力不从心”时,我们觉得有必要再次站出来以正视听,也就是说,我们这次的专题不再以内存使用为中心,更多的是纯技术性介绍,并对目前现存的主要内存技术误区进行重点纠正。 在最后要强调的是,本专题以技术为主,由于篇幅的原因,不可能从太浅的方面入手,所以仍需要有一定的技术基础作保证,而对内存感兴趣的读者则绝不容错过,这也许是您最好的纠正错误认识的机会! 在本专题里,当讲完内存的基本操作之后,我们会给大家讲一个仓库的故事,从中相信您会更了解内存这个仓库是怎么工作的,希望您能喜欢。 =========== SDRAM内存模组的物理Bank与芯片位宽 虽然有关内存结构与时序的基础概念,在本刊2001年第2期的专题中就已有阐述,但在这里为了保证专题的可读性,我们需要再次加强这方面的系统认识。正确 并深刻理解内存的基础概念,是阅读本专题的第一条件。因为即使是RDRAM,在很多方面也是与SDRAM相似的,而至于DDR与DDR-Ⅱ、QBM等形式 的内存更是与SDRAM有着紧密的联系。 SDRAM内存模组与基本结构 我们平时看到的SDRAM都是以模组形式出现,为什么要做成这种形式呢?这首先要接触到两个概念:物理Bank与芯片位宽。 PC133时代的168pin SDRAM DIMM 1、 物理Bank 传统内存系统为了保证CPU的正常工作,必须一次传输完CPU在一个传输周期内所需要的数据。而CPU在一个传输周期能接受的数据容量就是CPU数据总线 的位宽,单位是bit(位)。当时控制内存与CPU之间数据交换的北桥芯片也因此将内存总线的数据位宽等同于CPU数据总线的位宽,而这个位宽就称之为物 理Bank(Physical Bank,下文简称P-Bank)的位宽。所以,那时的内存必须要组织成P-Bank来与CPU打交道。资格稍老的玩家应该还记得Pentium刚上市 时,需要两条72pin的SIMM才能启动,因为一条72pin -SIMM只能提供32bit的位宽,不能满足Pentium的64bit数据总线的需要。直到168pin-SDRAM DIMM上市后,才可以使用一条内存开机。下面将通过芯片位宽的讲述来进一步解释P-Bank的概念。 不过要强调一点,P-Bank是SDRAM及以前传统内存家族的特有概念,在RDRAM中将以通道(Channel)取代,而对于像Intel E7500那样的并发式多通道DDR系统,传统的P-Bank概念也不适用。 2、 芯片位宽 上文已经讲到SDRAM内存系统必须要组成一个P-Bank的位宽,才能使CPU正常工作,那么这个P-Bank位宽怎么得到呢?这就涉及到了内存芯片的结构。 每个内存芯片也有自己的位宽,即每个传输周期能提供的数据量。理论上,完全可以做出一个位宽为64bit的芯片来满足P-Bank的需要,但这对技术的要 求很高,在成本和实用性方面也都处于劣势。所以芯片的位宽一般都较小。台式机市场所用的SDRAM芯片位宽最高也就是16bit,常见的则是8bit。这 样,为了组成P-Bank所需的位宽,就需要多颗芯片并联工作。对于16bit芯片,需要4颗(4×16bit=64bit)。对于8bit芯片,则就需 要8颗了。 以上就是芯片位宽、芯片数量与P-Bank的关系。P-Bank其实就是一组内存芯片的集合,这个集合的容量不限,但这个集合的总位宽必须与CPU数据位 宽相符。随着计算机应用的发展,一个系统只有一个P-Bank已经不能满足容量的需要。所以,芯片组开始可以支持多个P-Bank,一次选择一个P- Bank工作,这就有了芯片组支持多少(物理)Bank的说法。而在Intel的定义中,则称P-Bank为行(Row),比如845G芯片组支持4个 行,也就是说它支持4个P-Bank。另外,在一些文档中,也把P-Bank称为Rank(列)。 回到开头的话题,DIMM是SDRAM集合形式的最终体现,每个DIMM至少包含一个P-Bank的芯片集合。在目前的DIMM标准中,每个模组最多可以 包含两个P-Bank的内存芯片集合,虽然理论上完全可以在一个DIMM上支持多个P-Bank,比如SDRAM DIMM就有4个芯片选择信号(Chip Select,简称片选或CS),理论上可以控制4个P-Bank的芯片集合。只是由于某种原因而没有这么去做。比如设计难度、制造成本、芯片组的配合 等。至于DIMM的面数与P-Bank数量的关系,在2001年2月的专题中已经明确了,面数≠P-Bank数,只有在知道芯片位宽的情况下,才能确定P -Bank的数量,大度256MB内存就是明显一例,而这种情况在Registered模组中非常普遍。有关内存模组的设计,将在后面的相关章节中继续探 讨。 =============================== SDRAM的逻辑Bank与芯片容量表示方法 1、逻辑Bank与芯片位宽 讲完SDRAM的外在形式,就该深入了解SDRAM的内部结构了。这里主要的概念就是逻辑Bank。简单地说,SDRAM的内部是一个存储阵列。因为如果是管道式存储(就如排队买票),就很难做到随机访问了。 阵列就如同表格一样,将数据“填”进去,你可以把它想象成一张表格。和表格的检索原理一样,先指定一个行(Row),再指定一个列(Column),我们 就可以准确地找到所需要的单元格,这就是内存芯片寻址的基本原理。对于内存,这个单元格可称为存储单元,那么这个表格(存储阵列)叫什么呢?它就是逻辑 Bank(Logical Bank,下文简称L-Bank)。 L-Bank存储阵列示意图 由于技术、成本等原因,不可能只做一个全容量的L-Bank,而且最重要的是,由于SDRAM的工作原理限制,单一的L-Bank将会造成非常严重的寻址 冲突,大幅降低内存效率(在后文中将详细讲述)。所以人们在SDRAM内部分割成多个L-Bank,较早以前是两个,目前基本都是4个,这也是SDRAM 规范中的最高L-Bank数量。到了RDRAM则最多达到了32个,在最新DDR-Ⅱ的标准中,L-Bank的数量也提高到了8个。 这样,在进行寻址时就要先确定是哪个L-Bank,然后再在这个选定的L-Bank中选择相应的行与列进行寻址。可见对内存的访问,一次只能是一个L- Bank工作,而每次与北桥交换的数据就是L-Bank存储阵列中一个“存储单元”的容量。在某些厂商的表述中,将L-Bank中的存储单元称为Word (此处代表位的集合而不是字节的集合)。 从前文可知,SDRAM内存芯片一次传输率的数据量就是芯片位宽,那么这个存储单元的容量就是芯片的位宽(也是L-Bank的位宽),但要注意,这种关系也仅对SDRAM有效,原因将在下文中说明。 2、内存芯片的容量 现在我们应该清楚内存芯片的基本组织结构了。那么内存的容量怎么计算呢?显然,内存芯片的容量就是所有L-Bank中的存储单元的容量总合。计算有多少个存储单元和计算表格中的单元数量的方法一样: 存储单元数量=行数×列数(得到一个L-Bank的存储单元数量)×L-Bank的数量 在很多内存产品介绍文档中,都会用M×W的方式来表示芯片的容量(或者说是芯片的规格/组织结构)。M是该芯片中存储单元的总数,单位是兆(英文简写M, 精确值是1048576,而不是1000000),W代表每个存储单元的容量,也就是SDRAM芯片的位宽(Width),单位是bit。计算出来的芯片 容量也是以bit为单位,但用户可以采用除以8的方法换算为字节(Byte)。比如8M×8,这是一个8bit位宽芯片,有8M个存储单元,总容量是 64Mbit(8MB)。 不过,M×W是最简单的表示方法。下图则是某公司对自己内存芯片的容量表示方法,这可以说是最正规的形式之一。 业界正规的内存芯片容量表示方法 我们可以计算一下,结果可以发现这三个规格的容量都是128Mbits,只是由于位宽的变化引起了存储单元的数量变化。从这个例子就也可以看出,在相同的总容量下,位宽可以采用多种不同的设计。 3、与芯片位宽相关的DIMM设计 为什么在相同的总容量下,位宽会有多种不同的设计呢?这主要是为了满足不同领域的需要。现在大家已经知道P-Bank的位宽是固定的,也就是说当芯片位宽 确定下来后,一个P-Bank中芯片的个数也就自然确定了,而前文讲过P-Bank对芯片集合的位宽有要求,对芯片集合的容量则没有任何限制。高位宽的芯 片可以让DIMM的设计简单一些(因为所用的芯片少),但在芯片容量相同时,这种DIMM的容量就肯定比不上采用低位宽芯片的模组,因为后者在一个P- Bank中可以容纳更多的芯片。比如上文中那个内存芯片容量标识图,容量都是128Mbit,合16MB。如果DIMM采用双P-Bank+16bit芯 片设计,那么只能容纳8颗芯片,计128MB。但如果采用4bit位宽芯片,则可容纳32颗芯片,计512MB。DIMM容量前后相差出4倍,可见芯片位 宽对DIMM设计的重要性。因此,8bit位宽芯片是桌面台式机上容量与成本之间平衡性较好的选择,所以在市场上也最为普及,而高于16bit位宽的芯片 一般用在需要更大位宽的场合,如显卡等,至于4bit位宽芯片很明显非常适用于大容量内存应用领域,基本不会在标准的Unbuffered 模组设计中出现。 ======================= SDRAM的引脚与封装 内存芯片要想工作,必须要与内存控制器有所联系,同时对于一个电气元件,电源供应也是必不可少的,而且数据的传输要有一个时钟作为触发参考。因此, SDRAM在封装时就要留出相应的引脚以供使用。电源与时钟的引脚就不必多说了,现在我们可以想象一下,至少应该有哪些控制引脚呢? 我们从内存寻址的步骤缕下来就基本明白了,从中我们也就能了解内存工作的大体情况。这里需要说明的是,与DIMM一样,SDRAM有着自己的业界设计规 范,在一个容量标准下,SDRAM的引脚/信号标准不能只考虑一种位宽的设计,而是要顾及多种位宽,然后尽量给出一个通用的标准,小位宽的芯片也许会空出 一些引脚,但高位宽的芯片可能就全部用上了。不过容量不同时,设计标准也会有所不同,一般的容量越小的芯片所需要的引脚也就越小。 1、 首先,我们知道内存控制器要先确定一个P-Bank的芯片集合,然后才对这集合中的芯片进行寻址操作。因此要有一个片选的信号,它一次选择一个P-Bank的芯片集(根据位宽的不同,数量也不同)。被选中的芯片将同时接收或读取数据,所以要有一个片选信号。 2、 接下来是对所有被选中的芯片进行统一的L-Bank的寻址,目前SDRAM中L-Bank的数量最高为4个,所以需要两个L-Bank地址信号(22=4)。 3、 最后就是对被选中的芯片进行统一的行/列(存储单元)寻址。地址线数量要根据芯片的组织结构分别设计了。但在相同容量下,行数不变,只有列数会根据位宽的而变化,位宽越大,列数越少,因为所需的存储单元减少了。 4、 找到了存储单元后,被选中的芯片就要进行统一的数据传输,那么肯定要有与位宽相同数量的数据I/O通道才行,所以肯定要有相应数量的数据线引脚。 现在我们就基本知道了内存芯片的一些信号引脚,下图就是一个简单的SDRAM示意图,大家可以详细看看。 图注:128Mbit芯片不同位宽的引脚图(NC代表未使用,-表示与内侧位宽设计相同) 根据SDRAM的官方规范,台式机上所用的SDRAM在不同容量下的各种位宽封装标准如下: