tag 标签: 上升时间

相关博文
  • 热度 5
    2015-7-1 17:08
    2779 次阅读|
    2 个评论
    对于雷达等脉冲调制信号来说,对于脉冲信号其宽度、上升时间、占空比、重复频率等都是非常关键的时域参数。按照 IEEE Std 181 规范的要求,一些主要的脉冲参数的定义如下图所示。   当用宽带示波器已经把射频脉冲捕获下来以后,就可以借助于示波器里内置的数学函数编辑一个数学的检波器。如下图所示,黑色曲线是从原始信号里用数学检波器检出的包络信号。包络波形得到后,借助于示波器本身的参数测量功能,就可以进行一些基本的脉冲参数测试。   更进一步地,我们还可以借助于示波器的 FFT 功能得到信号的频谱分布,借助示波器的抖动( Jitter )分析软件得到脉冲内部信号频率或相位随时间的变化波形,并把这些结果显示在一起。下图显示的是一个 Chirp 雷达脉冲的时域波形、频率 / 相位变化波形以及频谱的结果,通过这些波形的综合显示和分析,可以直观地看到雷达信号的变化特性,并进行简单的参数测量。   在雷达等脉冲信号的测试中,是否能够捕获到足够多的连续脉冲以进行统计分析也是非常重要的。如果要连续捕获上千甚至上万个雷达脉冲,可能需要非常长时间的数据记录能力。比如某搜索雷达的脉冲的重复周期是 5ms ,如果要捕获 1000 个连续的脉冲需要记录 5s 时间的数据。如果使用的示波器的采样率是 80G/s ,记录 5s 时间需要的内存深度 =80G/s*50s=400G 样点,这几乎是不可能实现的。 为了解决这个问题,现代的高带宽示波器里都支持分段存储模式。所谓分段存储模式( Segmented Memory Mode ),是指把示波器里连续的内存空间分成很多段,每次触发到来时只进行一段很短时间的采集,直到记录到足够的段数。很多雷达脉冲的宽度很窄,在做雷达的发射机性能测试时,如果感兴趣的只是有脉冲发射时很短一段时间内的信号,使用分段存储就可以更有效利用示波器的内存。   在下图中的例子里,被测脉冲的宽度是 1us ,重复周期是 5ms 。我们在示波器里使用分段存储模式,设置采样率为 80G/s ,每段分配 200k 点的内存,并设置做 10000 段的连续记录。这样每段可以记录的时间长度 =200k/80G=2.5us ,总共使用的示波器的内存深度 =200k 点 *10000 段 =2G 点,实现的记录时间 =5ms*10000=50s 。也就是说,通过分段存储模式实现了连续 50s 内共 10000 个雷达脉冲的连续记录。
  • 热度 22
    2015-3-6 17:33
    3030 次阅读|
    0 个评论
    近期拜访客户(北京高校和研究所),演示PicoScope9311的TDR功能,测量线缆的阻抗等,客户都会问到我们标称的60ps的上升时间,怎么测量。 所以抽空整理了一下步骤,跟大家分享一下。 按照下面配置确保正确的TDR上升时间。 使用PicoScope9311提供的30cm线缆,直接连接30cm从TDR输出到通道1输入。 步骤: 1、连接示波器,接通电源60分钟之后,进行水平和垂直方向的校准。 2、按照图片连线 3、设置PicoScope9300软件:       右击 这个按钮 ,然后选择 Factory Setup。       点击TDR/TDT ,然后选择Simulus 菜单。      点击Output1的On ,然后Output2.      设置限制电压为7V。      设置正输出幅值到5。      取消通道2.      设置通道1垂直标尺到200mV/div      设置通道1偏置offset为0mV。 4、设置测量:       点击Measure,然后点击Display菜单中的Statistics       点击X Parameters菜单中的Rise time       点击Definition,然后Method菜单中的User Defined。 5、经过100次采集之后(看Total Wfms 列)在测量区域Measurement Area记录Rise time平均值结果。它将小于60ps。 差分TDR PicoScope9311-统计 英国PicoScope9300系列示波器,20GHz带宽,4通道输入,1通道9.5GHz光输入,TDR/TDT测量,60ps和40ps上升时间,眼图测量,Fiber Channel, SONET/SDH,以太网,PCI Express, 无限带宽( InfiniBand ), RapidIO等内置遮罩测试。内置时钟恢复,外部触发等,包含频谱分析,任意波形发生器等功能。更多详细请与Pico Technology中国总代理广州虹科电子科技有限公司联系,020-38743030.
  • 热度 27
    2014-11-13 11:05
    3678 次阅读|
    2 个评论
    如何了解你的信号带宽?--频谱仪篇       要进行数字信号的分析,首要的原因是真实传输的高速数字信号已经远远不是教科书里理想的0/1电平。真实的数字信号传输过程中一定会有一些(甚至很严重的)失真和变形。如下图所示红色是我们期望的理想的数字信号波形,而黄色的则可能是真实的信号波形,可以看到信号上已经由于震荡(通常由于阻抗匹配不好)已经发生了较大变形。其实在高速的情况下这已经是比较好的信号波形了,很多时候信号的波形会比这个更加恶劣。       要进行数字信号的研究,首先要得到真实的数字信号波形,这就涉及到使用的测量仪器问题。观察电信号的波形的最好工具是示波器,当信号速率比较高时,一般所需要的示波器带宽也更高。如果使用的示波器带宽不够,信号里的高频成分会被滤掉,观察到的数字信号也会产生失真。很多数字工程师会习惯用谐波来估算信号带宽,但是这种方法不太准确。     对于一个理想的方波信号,其上升沿是无限陡的,从频域上看它是由无限多的奇数次谐波构成的,因此一个理想方波可以认为是无限多奇次正弦谐波的叠加。     但是对于真实的数字信号来说,其上升沿不是无限陡,因此其高次谐波的能量会受到限制。比如下图是用同一个时钟源分别产生的50Mhz和250MHz的时钟信号的频谱,我们可以看到虽然输出时钟频率不一样,但是信号的主要频谱能量都集中在5GHz以内,并不见得250MHz的频谱分布就一定比50MHz的大5倍。       对于真实的数据信号来说,其频谱会更加复杂一些。比如伪随机序列(PRBS)码流的频谱的包络是一个Sinc函数。下图是用同一个发射机分别产生的800Mbps和2.5Gbps的PRBS信号的频谱,我们可以看到虽然输出数据速率不一样,但是信号的主要频谱能量都集中在4GHz以内,也并不见得2.5Gbps信号的高频能量就比800Mbps的高很多。       上面的两张图都是借助于频谱仪测量得到的。虽然现代的数字示波器都已经具备了数字FFT的功能可以帮助用户观察信号频谱,但是由于ADC位数和动态范围的限制,频谱仪仍然是对信号能量的频率分布进行分析的最准确的工具,所以数字工程师可以借助于频谱分析仪对被测数字信号的频谱分布进行分析。当没有频谱仪可用时,我们通常根据数字信号的上升时间去估算被测信号的频谱能量。 Maximum signal frequency content = 0.4/fastest rise or fall time (20 - 80%) Or Maximum signal frequency content = 0.5/fastest rise or fall time (10 - 90%)     注:历史上有很多根据数字信号的上升时间估算带宽的估算公式,上面提供的公式是对于高速数字信号进行带宽估算最常用的方法。这个公式来源于霍华德先生写的《高速数字设计》这部经典的信号完整性书籍。关于其具体的来源和含义也可以参考本人刚出版的《高速数字接口原理与测试指南》一书。
相关资源