tag 标签: scp

相关博文
  • 热度 23
    2014-7-29 10:33
    1613 次阅读|
    2 个评论
    通常,在电机驱动应用中需要很多不同类型的保护,包括保护功率晶体管、电机或系统的任何部件。变频器的电流保护是其中至关重要的一项。它不仅能预防对功率晶体管的任何潜在损坏,而且在发生故障或控制变得不稳定时能预防电机消磁。过流保护(OCP) 和短路保护(SCP)常常互换使用,但两者还是存在差别,我们将在本博文中探讨。 OCP和SCP的差别 简单来说,短路保护是过电流保护的一部分。图1表示不同电流保护之间的关系。 接地故障保护、臂短保护和相间短保护都属于短路保护。 图 1. 过流保护与短路保护比较 图2表示不同的短路模式和电流路径。如图2(a)所示,当电机绕组短接至电机壳体(通常接地)时,或者当电机电缆短接至接地时,则发生接地故障。图2(b)表示桥臂短路,指高侧IGBT和低侧IGBT同时意外导通并产生极高电流的情况。图2(c)表示相间短路,当不同相间的电机绕组短路时发生。所有三个示例中,电流幅度因电流路径(包括IGBT本身的)阻抗而受限。 图 2. 短路电流路径 如何设置 OCP点? 无论面对什么类型的过流情况,如何设置保护电流大小都很关键。要解决这一问题,首先应识别系统中最脆弱的部件。在大多数情况下,IGBT将早于续流二极管受损,因为,当变频器将功率传递至电机时,更容易发生过流情况。那么,是否应该将OCP跳变值设为IGBT能够处理的最大电流? 这取决于系统采用的控制方法。在伏特/赫兹控制中(广泛用于感应电机应用),启动时的电流值无法精确预测。另一方面,如果采用磁场定向控制这样的电流控制方法,则特定应用中电机的最大电流值是众所周知的。如图3所示,为此值添加一些裕量将成为OCP触发大小的良好参考点。例如,带FOC的电冰箱使用的永磁电机,其额定电流为1A rms,但是,在初始启动冷却期间,可承受120%的过载达10分钟。此情况下,最大峰值电流为1 A rms * 120% * Sqrt(2) = 1.7 A峰值。考虑电流控制过冲裕量,可选择+/- 2 A作为控制中的电流反馈范围。接着可将2.5 A设为OCP跳变点。即使在变频器电路中采用饱和电流为30 A的5 A IGBT,电流跳变点也不需要设为10 A或更高。高电流跳变点可能造成电机消磁。如果有固定时间的过载能力,可执行I 2 T保护来补充OCP。 图   3. OCP点与其它电流大小的关系 采用哪种保护方法? 另一方面,SCP侧重于IGBT故障。Fairchild SPM®智能功率模块中的IGBT具备卓越的短路性能,但如果不能在几微秒内安全关断,仍可能受损。因此,应配置延迟时间固定在几微妙的硬件,而非通过软件实现。保护IGBT免受短路损坏的最常见方法是通过电流检测电阻感测负直流总线电轨上的电流,如图4(a)所示,并将压降前馈至栅极驱动器,以便后者同时软关断IGBT。在短路条件下关断IGBT可能造成过大电压尖峰和闭锁故障。而软关断是克服这些问题最为有效的方法。对于额定功率高于5 Hp的变频器,电流检测电阻的选择相当有限,而Fairchild的SPM 2系列产品采用感测IGBT,其中配备感测发射极引脚,载流仅为实际发射极电流的一小部分。三个感测发射极相连,使电流通过外部电流检测电阻,如图4(b)所示。压降以相似的方法前馈至栅极驱动IC。 图   4. 使用电流检测电阻进行短路保护 这些方法的缺点之一是无法检测接地故障电流,如图2(a)所示。只要总和不为零,软件可计算三相电流并识别接地故障。但响应速度可能不足以预防IGBT损坏。一个磁芯、一只正直流母线电轨上的电流检测电阻和去饱和保护也是可选接地保护方式。Fairchild可提供带不饱和保护功能的光电栅极驱动器。配备这些功能的器件有FOD8316、FOD8318和FOD8332等等。 总结 本文介绍了OCP和SCP的差别以及各种保护方案。为了满足应用要求,应精心选择合适的保护方法。 有关SPM产品的更多信息,请访问SPM登录页面: http://www.fairchildsemi.com.cn/spm/ 有关所有Fairchild电机控制产品的信息,请访问电机控制登录页面: http://www.fairchildsemi.com.cn/applications/motor-control/  
  • 热度 14
    2012-12-19 18:51
    810 次阅读|
    0 个评论
      作者: Stephen Crump ,德州仪器(TI) 音频与成像产品音频功率放大器应用工程师   我们可能在设计时将多个音频功率放大器连接至一个输出电路,以复用不同源,或者连接一个外部放大器来延长电池使用时间。此外,我们还可能会将一个放大器输出无意中连接至另一个放大器输出或者电源。所有这些连接都会迫使 APA 输出电压异常,从而损坏 APA。要避免此类损坏必须注意一些限制因素,而本文对这些限制的原因进行了解释说明。   无论 APA 是开启还是关闭都会发生这种损坏现象。APA 开启时,大多数 APA 的输出都受到短路保护 (SCP) 电路或过流保护 (OCP) 电路的保护,但是 APA 可承受的电压范围仍然相同。一般而言,强制进入 APA 输出的电压必须作如下限定以避免出现 APA 损坏:   不应强制 APA 输出超出 APA 正电源电压(VDD 或 VCC)0.3V以上,或其负电源电压(基准电压或 VSS)-0.3V以下。 不得强制 APA 输出超过 APA 产品说明书额定电源电压的绝对最大值。   APA 如何响应强制进入其输出的电压 关闭时,APA输出有不同的电阻,范围从几欧姆到高阻抗时的数千欧姆。如果连接至 APA 输出的外部音频源可以驱动这种电阻,则其会推动 APA 输出的电压。   开启状态时,大多数 AB 类器件都有 SCP 持续电流限制。这种APA 将其输出保持在计划输出电压水平,直到其被另一个源强制进入 SCP 或 OCP。之后,它继续吸取其限流,但其输出电压受到另一个源的控制。如果 APA 继续吸取其限流,则它可能会过热,并且会转入热关闭。它的输出电压完全受另一个源控制。APA 充分冷却后,它会重新开启,只要不断开外部源连接,这一循环就不会停止。   典型的 D 类 APA 将其输出保持在计划输出电压水平,直到它被强制进入 SCP 或 OCP 为止。那么,只要出现一定的电压限制它便关闭,其输出电压受到另一个源的控制,且没有吸取较大的电流。逐周期OCP 的D 类 APA 一般会表现如一个持续电流限制器,直到其关闭为止。   损坏发生的方式 如果在关闭时另一个源连接至一个 APA 输出,则它会强制 APA 输出跟随其电压。如果 APA 为开启状态,且另一个源可为强制 APA 进入 SCP 或 OCP 提供足够的电流,则另一个源会强制 APA 输出跟随其电压。可以有几种不同的损坏方式。   正向偏置主体二极管 单电源 APA 在正电源(通常称作 VDD 或 VCC)和基准电压之间运行。输出器件为一些带主体二极管的 FET,其在正常运行中为反向偏置。如果这些二极管中的一个变为正向偏置并且携带过大电流,则正常运行中为反向偏置的主体二极管(请参见图 1)就会被损坏。单电源 APA 被强制超出 VDD(或 VCC)以上 0.3V 或者基准电压以下 -0.3V 时,就会出现这种情况。   图 1 正向偏置主体二极管的电流传导     图 2 推动 APA 电源电压超出其限制     TI DirectPath? 运行在正电源(通常称作 VDD)和负轨(通常称作 VSS,一般产生自开关电路 VDD)之间,VSS 的量级一般低于 VDD 的量级。一些DirectPath APA 将主 VDD 调节至更低电平,得到其输出 HPVDD,并自 HPVDD 产生一个负轨 HPVSS 来控制最大输出功率。如果 DirectPath APA 的输出被强制超出 VDD/HPVDD 以上 0.3V 或者 VSS/HPVSS 以下 -0.3V,其中一个主体二极管可能会变为正向偏置并携带过大电流,从而损坏该二极管。   电源过电压 即使外部源电流不损坏主体二极管,但它们可能会流至 VDD/HPVDD 或VSS/HPVSS(请参见图 2)。VDD/HPVDD 和 VSS/HPVSS 一般只获取电流,因此二极管电流可能会使电源电压超出其绝对最大额定值,并因此可能会损坏APA 和/或电源组件。   表 1 或许会有助于理解各种 DirectPath APA 的不同电源。通过将其产品说明书资料同该表进行对比,我们可以确定此处未涉及器件的电源。电源标识可能会与表中所示标识不同。   表 1 APA 器件电源电压限制对比          
相关资源
  • 所需E币: 1
    时间: 2022-7-23 11:01
    大小: 11.99KB
    上传者: Argent
    SCPScalew-ParametersAOIforRSlogix5000ver16
  • 所需E币: 5
    时间: 2019-12-25 16:33
    大小: 313.92KB
    上传者: quw431979_163.com
    linux常用命令手册UNIXTOOLBOXThisdocumentisacollectionofUnix/Linux/BSDcommandsandtaskswhichareusefulforITworkorforadvancedusers.Thisisapracticalguidewithconciseexplanations,howeverthereaderissupposedtoknowwhats/heisdoing.1.System.......................................22.Processes......................................73.FileSystem.....................................84.Network......................................135.SSHSCP.....................................206.VPNwithSSH....................……