tag 标签: zvs

相关帖子
相关博文
  • 热度 14
    2014-7-6 07:31
    1640 次阅读|
    0 个评论
       1、引言   传统的PWM DC/DC 移相全桥零电压软开关(ZVS)变换器利用变压器的漏感或/和原边串联电感和开关管的外接或/和寄生电容之间的谐振来实现零电压软开关,由于超前桥臂和滞后桥臂实现零电压软开关ZVS的条件不尽相同,导致了滞后桥臂实现零电压软开关ZVS的难度比超前桥臂要大得多;输出整流二极管换流时关断的二极管反向恢复会引起次级较大的电压尖峰;并且还存在较为严重的副边占空比丢失的情况。为了解决这些问题,以下提出了一种改进型的电路拓扑结构。    2、改进型移相全桥ZVS DC-DC变换器主电路   改进型移相全桥ZVS DC-DC变换器主电路结构和各点波形对照如下图2-1(a)和(b)所示:   容易看出改进型的电路拓扑与基本型电路的主要差别在于副边整流电路,该整流电路被称为倍流整流器(Current-Doubler Rectifier,CDR),是目前应用的热点之一。下面首先介绍一下该整流电路。与全波整流相比,倍流整流器的高频变压器副边绕组仅需一个单一绕组,不用中心抽头。与桥式整流相比,倍流整流器使用的二极管数量少一半。所以说,倍流整流器是结合全波整流和桥式整流两者优点的新型整流器。当然,倍流整流器要多使用一个输出小滤波电感。但此电感的工作频率及输送电流均比全波整流器的要小一半,因此可做得较小,另外双电感也更适合于分布式功率耗散的要求。   以下我们来研究一下改变整流电路后变换器主电路的工作状况有什么不同。   由于电路工作状态在一个周期内可以分为两个完全一样的过程,所以以下仅仅分析半个周期的情况,而这半个周期又可分为以下三种开关模态(对照上图2-1所示)。    (1). 开关模态 1: t0 t t1 其中t1=DTs/2   此时Q1和Q4同时导通,变压器副边电感L1和整流管DS2 导通, 原边能量向负载端传递。此模态的等效电路如下图2-2:   其中,a为变压器变比,Vin是直流母线电压,I1和I2分别是电感L1和 L2电流(L1=L2=Ls),此时有如下等式成立:   当Q4关断时该模态过程结束。    (2).开关模态 2 : t1 t t2 其中t2≤Ts/2   在t1时刻关断Q4 ,此时副边电感L1中储存的能量给Q4电容(或并联电容)充电同时将Q3两端电容电荷放掉。为了实现软开关,Q4关断和Q3开通之间至少要存在一死区时间Δt1, 使得在Q3开通前D3首先导通,且有等式:   成立。其中Ceff 是开关管漏源两端等效电容,Ip1为 t1时刻变压器原边流过电流。当D3导通后,变压器副边两个二极管DS1 和DS2同时导通,电路工作在续流状态。此时等效电路如下图2-3所示:   此时有如下电路方程成立:   其中D为脉冲占空比,fS为电路工作频率,L'ik为主边变压器漏感(或与外接电感的串联值),rt是变压器原边等效电阻,τ是原边等效电流衰减时间常数,Vfp是反并联二极管导通压降。    (3). 开关模态3: t2 t t3 其中t3=Ts/2   处于该模态时,电路原边导通情况与以上的模态2一致。此时由于换流过程结束,DS2关断。所以等效电路如下图2-4所示:   此时有电路方程如下:   注意这时I1,I2与模态2相同,但是DS1中将流过全部的负载电流。当Q1关断时该模态结束。此时副边电感L2中储存的能量同时给开关管Q1和Q2 漏源端电容充电和放电。   Q1关断后,D2 和D3将导通,这时候就可以给Q2和Q3以开通触发信号了,当电流反向后,Q2,Q3导通,能量再次从原边传递到副边,于是Q2,Q3都是零电压开通。   由于对称性,剩下的半个周期的工作状况与以上完全相同。   由此可以得到负载端输出电压:   注意它与一般的全波整流电路之间的1/2倍的关系。   由工作原理可以得到如下结论:   (1). 超前臂开关管和滞后臂开关管的ZVS都利用了次级输出滤波电感的能量来实现,因此串联在原边的电感值可以大大减小(甚至可以不需要串联电感,只用变压器的原边漏感)。   (2). 软开关实现时能量由副边电感和原边电感共同提供,因此可以在较宽的负载范围内实现ZVS。   (3). 超前臂开关管和滞后臂开关管实现软开关ZVS的条件没有基本型电路苛刻,并且由于副边电感的影响,它们之间的软开关实现条件的差异较之基本型电路大大减小。    3、变换器控制电路设计   该控制系统通过采集原边母线电流、副边侧输出电压来构成两个控制闭环:电流内环和电压外环,原理框图如下图3-1所示。UCC3895是美国TI公司生产 的一种高性能电流/电压移相PWM控制器。它是UC3875(79)的改进型;它最适合于移相全桥电路,同时配合零电压开关工作以实现在高频时的局部软开关性能。它除了具有UC3875(79)的功能外,最大的改进是增加了自适应死区设置,以适应负载变化时不同的准谐振软开关要求。同时由于它采用了BCDMOS工艺,使得它的功耗更小,工作频率更高。   从原理框图可以清楚的看出:原边母线电流通过电流互感器隔离采集得到,该信号再通过滤波以及斜坡补偿电路后得到电流控制信号;而输出电压信号经过TL431调节后经过光耦隔离,再与设定电压参考值比较得到电压控制信号。电流和电压控制信号输入移相PWM控制器UCC3895后经由芯片内部比较器以及脉冲产生电路得到四路PWM控制信号,但是有一点必须注意,那就是UCC3895的驱动能力很弱,所以必须将这些控制信号加以功率放大并隔离,然后才能驱动主电路的两个桥臂中的开关管。其中,采用母线电流的好处是它能反映同一桥臂上下开关管的贯通情况,从而为开关管的保护电路提供一定的依据。另外,该方案成功与否的关键就是斜坡补偿电路以及隔离驱动电路    4、实用电路分析   图4-1所示为实际采用的主电路图,其中滤波和EMI部分主要简单考虑了串模和共模干扰的处理。整流桥最大流过电流10A,并加一保险丝防止大的事故出现。R1和R2组成直流母线电压检测分压器,得到的电压信号经过控制和逻辑电路后,一路直接给母线软起动电路的固体继电器SSR,另外一路给控制芯片的软起动控制电路SS(Soft Start)部分来控制UCC3895的软起动,并且这两路软起动之间的延迟时间是可通过电路参数调节的。C5和C6都是电解电容,其值2200uF。CS是母线电流互感器,通过检测母线电流信号,再与芯片内部振荡器输出的Ct端电压信号通过一定比例的叠加,可以得到斜坡补偿的电流信号;同时该电流检测电路还能起到逐个脉冲(Pulse by Pulse)的过流保护功能,并可以防止同一桥臂上下管同时导通。Ch是高频无感电容,大小为0.033uF, 由于电路的工作频率较高,所以在电路的设计中将它尽可能的靠近电流互感器和地连接。Q1-Q4 为主开关管,图中其并联二极管是其内部等效表示,电容可以是外接电容。Ls是谐振电感,其值10uH,Tr是主变压器,变比为1:1, DS1,DS2, Lf1, Lf2组成倍流整流器的副边。C7, C8是电解电容,它们的大小皆为2200uF, C9为高频无感电容大小为1uF 。   250V直流电压输入时(其中负载电阻为10.7Ω,电路工作频率均为100KHz。):软开捅时开关管G、E两端电压(波形1)和C、E两端电压(波形2)波形   由以上两图(a)和(b)可以看出:在开关管C、E两端电压降为零(反并联二极管在此之前导通)之后100-200ns栅极驱动电压才上升到栅平台值(6V左右),此时开关管才开始导通,所以它们是零电压开通的。同时注意:超前桥臂和滞后桥臂的软开通有一定差别,具体说来就是超前臂比较容易实现软开通一些,所以在相同条件下它的软开通效果较为明显。    5、结语   该电路设计方案是切实可行的,它结合了电流模式控制、移相PWM控制、倍流整流器电路、最新驱动芯片以及专门设计的开关器件的一些优点:   (1). 从实验波形来看,变换器的超前与滞后桥臂开关器件均能很好的实现零电压软开关,并且零电压软开关的实现条件以及两个桥臂软开关的差异也比基本型电路小。除此之外,采用倍流整流器电路后,变换器的设计也更加简单化:比如主变压器的副边只需要单一绕组,而不是像全波整流那样需要引入中心抽头;而且副边电感量的大幅减小也使得电感的设计更加方便。   (2). 采用电流模式控制能带来一系列的好处。比如在防止变压器磁芯饱和方面、能够很简单的提供逐脉冲限流控制以及保证倍流整流器副边电感电流的平衡方面,它都有着电压模式控制无法比拟的优点。   (3). 高速大电流驱动芯片使得驱动电路的设计更加简单可靠。
  • 热度 22
    2013-8-30 22:20
    1578 次阅读|
    0 个评论
       1  引言   近年来,移相全桥ZVSPWMDC/DC变换器由于它的显著特点已经在中大功率场合得到广泛的应用。而通过采用模拟芯片UC3895调节其两桥臂间对应开关的导通相位差,可实现其PWM模拟控制。近年来随着微处理器价格不断下降和计算能力不断增强,采用数字控制已成为大中功率开关电源的发展趋势。移相全桥ZVSPWM变换器是一个脉动的非线性系统。非线性系统的数字控制是人们多年来研究的热门课题之一。为了实现其高控制性能,本文采用数字信号处理器(DSP)来控制上述变换器。首先建立移相全桥ZVSPWM变换器的准线性模型,然后在此模型的基础上应用极点配置自适应控制策略设计出数字控制系统。    2  移相全桥ZVSPWMDC/DC变换器的准线性模型   用状态空间平均法建立的DC/DC变换器线性小信号模型,描述系统在额定工作点附近的工作特性。然而,由于这种方法规定变换器的参数只能在额定工作点附近变化,因此,对于工作在各种参数变化较大(如输入电压变化较大)的移相全桥变换器来说,这种建模方法显然不是很有效。为了克服这一缺点,文献 提出了准线性建模方法。准线性模型由稳定点模型和该稳定点下的小信号扰动模型两部分组成。稳定点模型描述系统在特定输入电压和负载情况下的稳定特性,其稳定工作点是变化的;扰动模型描述变换器在稳定点的暂态特性,它不是围绕着固定工作点作扰动得出的小信号模型,而是围绕着变化的工作点作扰动,且其变量比前者减少的小信号差分状态方程来描述。    2.1  准线性小信号扰动模型   移相全桥ZVSPWMDC/DC变换器主拓扑如图1所示。如果以移相全桥变换器的输出电感电流IL,输出电容电压Vc,输入电压Vin和占空比D为变量,对这4个变量加小信号扰动,就能得出精确的线性小信号模型。这个模型可以精确地描述移相全桥变换器工作在固定工作点附近的特性。而建立其准线性小信号扰动模型时,不是对所有4个变量都施加扰动,若选择输入电压不作线性化扰动,则作线性化扰动的变量就只包括输出电感电流IL,输出电容电压Vc及占空比D,这样移相全桥变换器稳态工作点不再是固定的,而是随着输入电压的变化而变化,从而,上述变量小信号扰动的大小也应为变量瞬时值与其在相应的稳态工作点稳态值之差。图2是移相全桥变换器线性小信号电路模型 , ( 为有效占空比的总扰动量; 为滤波电感电流变化引起的 的变化量; 为输入电压变化而引起的 的变化量; 是原边占空比的变化量)。 图1  移相全桥ZVS变换器的主电路 图2  移相全桥变换器的线性小信号电路模型   根据文献 建立线性小信号模型的方法,建立准线性小信号扰动模型,只要不考虑输入电压变化对有效占空比总扰动量的影响,就可得出其准线性小信号扰动模型,如图3所示。   根据图3可得出准线性小信号扰动模型的状态方程,即   (1)   式中:x(t)为状态变量,包括小信号滤波电感电流和小信号滤波电容电压两个状态变量,分别等于输出电感电流和输出电压与它们的设定值之差;D′为小信号占空比扰动输入;y(t)为输出变量;L为输出滤波电感量;C为输出滤波电容量;R为负载;Vin为输入电压;n为变压器副边与原边的匝数比;L1为谐振电感;fs为开关频率。 图3  移相全桥变换器的准线性小信号扰动模型   离散化后可得出其差分方程为   (2)    2.2  稳态工作点模型   通常,变换器的输出电感电流IL与输出电容电压Vc,随输入电压变化而变化,但在实际中,往往要求开关电源的输出电压维持在一个固定值。假设输出电容串联电阻很小,则输出电容电压就等于输出电压,这样,稳态工作点(Ucop,ILop,Dop)中的输出电容电压Ucop是一个常数,又由于变换器平均电感电流等于负载电流,因此,取其参考电感电流ILop等于负载电流,从而移相全桥变换器在稳定工作时的占空比,可表示为系统稳定点状态变量和系统输入电压的函数。移相全桥变换器工作过程中有占空比丢失的问题,有效占空比Deff为变压器次级占空比,Deff和丢失的占空比ΔD可分别表示为 Deff= (3) ΔD= (4)   式中:T为开关周期。   于是控制用的原边占空比Dop可表示为有效占空比与丢失的占空比之和,即Dop为 Dop= (5)   它是随着输入电压的变化而调整的,亦即此模型具有前馈控制的特点,对输入电压的扰动具有很强的抑制作用,能有效地保证了系统在大信号扰动下的稳定。    3  极点配置自适应数字控制   控制系统的动态响应是由系统的极点决定的。移相全桥变换器由于自身的非线性特点,使它的动态特性往往很差,并且可能造成系统的不稳定,因此,需要通过极点配置反馈作用使系统的极点配置到所希望的极点上,从而提高系统的动态特性和稳定度。控制方法是用状态变量IL和Uc同参考值比较所得的误差乘以反馈矩阵-l得到占空比的扰动值,即 D′=-lx     l=〔l1-l2〕(6)   将式(6)代入式(2)得 x(k+1)=(A-lB)x(k)(7)   从而系统得特征方程为 det =0(8)   假设我们根据电源的动态要求,获得了所希望的极点为a1和a2,则系统希望的特征方程为 Z2-(a1+a2)Z+a1a2=0(9)   通过对比式(8)和式(9),状态反馈矩阵l很容易求出,这样就可以把极点配置到指定点上。但是,由于矩阵B是输入电压Vin的函数,相应的反馈矩阵系数l也是输入电压的函数,它会随着输入电压的变化而变化。因此,需要不断地根据输入电压的变化来调整反馈矩阵系数l,以满足要求的动态响应,这样就实现了自适应控制,从而提高了整个控制系统的控制性能。    4  控制算法的方框图及算法流程图   图4是用DSP实现移相全桥变换器数字控制的方框图。DSP的主要作用是根据输入电压,输出电感电流预测值IL′和输出电容电压预测值Vc′计算出变换器的占空比D,使全桥变换器的输出电压稳定在所要求的输出电压值。其计算方程式为 D=Dop+ (10)   式(10)概括了本文所提出的基本控制思想。由于上述预测估算是每2个采样周期更新一次控制量,因此占空比也是每2个周期更新一次。 图4  控制系统方框图   驱动信号算法流程图如图5所示,从这里可看出根据准线性模型算出的占空比Dop是变化的,它决定了移相全桥变换器工作点的变化轨迹,且控制算法能根据变换器的动态变化不断调整系统的反馈矩阵系数l,以达到控制系统所要求的动态响应。 图5  算法流程图    5  Matlab仿真结果   设定移相全桥变换器的各项仿真参数如下:   变压器副边与原边的匝数比n=1∶3;谐振电感L1=17μH;滤波电容C=470μF;滤波电感L=360μH;开关频率fs=100kHz;Rd=4n2Lrfs;开关周期Ts=10μs;输出电压为U=50V。在这里设置希望配置的极点(Z域)为0.4+0.5j和0.4-0.5j,但它不一定是最优化的极点。   为了测试这种控制策略的有效性,进行以下仿真。   1)在设定初始占空比D=0.28时,系统从初始   零状态到稳态时的输出电压仿真波形,如图6所示。 图6  初始状态到稳态过程的输出电压仿真波形   从图6中可以看出控制系统经过大约200μs就能达到稳定,超调量为6V,控制系统得动态响应较快。   2)当输入电压由220V突变为180V时,输出电压变化的仿真波形,如图7所示。从图7中可以看出,控制系统在输入电压突变时,从一个稳定状态调整到另一个稳定状态需要大约3ms,输出电压的波动很小,最大为0.12V。 图7  输入电压突变时输出电压变化过程的仿真波形   3)当负载由5Ω突变为10Ω时,输出电压变化的仿真波形,如图8所示。从图8中同样可以看出,控制系统在输出负载突变时,从一个稳定状态调整到另一个稳定状态需要大约3ms,且输出电压的波动很小,大约为0.2V。 图8  负载突变时输出电压变化过程的仿真波形   从以上仿真波形可以看出,使用以上控制算法可使移相全桥变换器有较好的动态响应和稳定性,并且控制算法简单,易于实现。    6  结语   本文介绍了移相全桥变换器采用准线性建模和极点配置自适应数字控制的控制思想。准线性模型可以很好地描述系统在大扰动下的工作特性,极点配置自适应数字控制综合了自适应控制和极点配置控制两者的优点,通过仿真证明了这种控制策略不但算法简单,实现容易,并且可以保证变换器在各稳定工作点都有很好的动态特性和稳定性。另外这种控制策略可以用TI公司的DSP作为主控芯片来实现其数字控制,使得控制系统有更高的稳定性、可靠性和更强的灵活性。
  • 热度 22
    2013-8-30 22:19
    2270 次阅读|
    0 个评论
       1、引言   传统的PWM DC/DC 移相全桥零电压软开关(ZVS)变换器利用变压器的漏感或/和原边串联电感和开关管的外接或/和寄生电容之间的谐振来实现零电压软开关,由于超前桥臂和滞后桥臂实现零电压软开关ZVS的条件不尽相同,导致了滞后桥臂实现零电压软开关ZVS的难度比超前桥臂要大得多;输出整流二极管换流时关断的二极管反向恢复会引起次级较大的电压尖峰;并且还存在较为严重的副边占空比丢失的情况。为了解决这些问题,以下提出了一种改进型的电路拓扑结构。    2、改进型移相全桥ZVS DC-DC变换器主电路   改进型移相全桥ZVS DC-DC变换器主电路结构和各点波形对照如下图2-1(a)和(b)所示:   容易看出改进型的电路拓扑与基本型电路的主要差别在于副边整流电路,该整流电路被称为倍流整流器(Current-Doubler Rectifier,CDR),是目前应用的热点之一。下面首先介绍一下该整流电路。与全波整流相比,倍流整流器的高频变压器副边绕组仅需一个单一绕组,不用中心抽头。与桥式整流相比,倍流整流器使用的二极管数量少一半。所以说,倍流整流器是结合全波整流和桥式整流两者优点的新型整流器。当然,倍流整流器要多使用一个输出小滤波电感。但此电感的工作频率及输送电流均比全波整流器的要小一半,因此可做得较小,另外双电感也更适合于分布式功率耗散的要求。   以下我们来研究一下改变整流电路后变换器主电路的工作状况有什么不同。   由于电路工作状态在一个周期内可以分为两个完全一样的过程,所以以下仅仅分析半个周期的情况,而这半个周期又可分为以下三种开关模态(对照上图2-1所示)。    (1). 开关模态 1: t0 t t1 其中t1=DTs/2   此时Q1和Q4同时导通,变压器副边电感L1和整流管DS2 导通, 原边能量向负载端传递。此模态的等效电路如下图2-2:   其中,a为变压器变比,Vin是直流母线电压,I1和I2分别是电感L1和 L2电流(L1=L2=Ls),此时有如下等式成立:   当Q4关断时该模态过程结束。    (2).开关模态 2 : t1 t t2 其中t2≤Ts/2   在t1时刻关断Q4 ,此时副边电感L1中储存的能量给Q4电容(或并联电容)充电同时将Q3两端电容电荷放掉。为了实现软开关,Q4关断和Q3开通之间至少要存在一死区时间Δt1, 使得在Q3开通前D3首先导通,且有等式:   成立。其中Ceff 是开关管漏源两端等效电容,Ip1为 t1时刻变压器原边流过电流。当D3导通后,变压器副边两个二极管DS1 和DS2同时导通,电路工作在续流状态。此时等效电路如下图2-3所示:   此时有如下电路方程成立:   其中D为脉冲占空比,fS为电路工作频率,L'ik为主边变压器漏感(或与外接电感的串联值),rt是变压器原边等效电阻,τ是原边等效电流衰减时间常数,Vfp是反并联二极管导通压降。    (3). 开关模态3: t2 t t3 其中t3=Ts/2   处于该模态时,电路原边导通情况与以上的模态2一致。此时由于换流过程结束,DS2关断。所以等效电路如下图2-4所示:   此时有电路方程如下:   注意这时I1,I2与模态2相同,但是DS1中将流过全部的负载电流。当Q1关断时该模态结束。此时副边电感L2中储存的能量同时给开关管Q1和Q2 漏源端电容充电和放电。   Q1关断后,D2 和D3将导通,这时候就可以给Q2和Q3以开通触发信号了,当电流反向后,Q2,Q3导通,能量再次从原边传递到副边,于是Q2,Q3都是零电压开通。   由于对称性,剩下的半个周期的工作状况与以上完全相同。   由此可以得到负载端输出电压:   注意它与一般的全波整流电路之间的1/2倍的关系。   由工作原理可以得到如下结论:   (1). 超前臂开关管和滞后臂开关管的ZVS都利用了次级输出滤波电感的能量来实现,因此串联在原边的电感值可以大大减小(甚至可以不需要串联电感,只用变压器的原边漏感)。   (2). 软开关实现时能量由副边电感和原边电感共同提供,因此可以在较宽的负载范围内实现ZVS。   (3). 超前臂开关管和滞后臂开关管实现软开关ZVS的条件没有基本型电路苛刻,并且由于副边电感的影响,它们之间的软开关实现条件的差异较之基本型电路大大减小。    3、变换器控制电路设计   该控制系统通过采集原边母线电流、副边侧输出电压来构成两个控制闭环:电流内环和电压外环,原理框图如下图3-1所示。UCC3895是美国TI公司生产 的一种高性能电流/电压移相PWM控制器。它是UC3875(79)的改进型;它最适合于移相全桥电路,同时配合零电压开关工作以实现在高频时的局部软开关性能。它除了具有UC3875(79)的功能外,最大的改进是增加了自适应死区设置,以适应负载变化时不同的准谐振软开关要求。同时由于它采用了BCDMOS工艺,使得它的功耗更小,工作频率更高。   从原理框图可以清楚的看出:原边母线电流通过电流互感器隔离采集得到,该信号再通过滤波以及斜坡补偿电路后得到电流控制信号;而输出电压信号经过TL431调节后经过光耦隔离,再与设定电压参考值比较得到电压控制信号。电流和电压控制信号输入移相PWM控制器UCC3895后经由芯片内部比较器以及脉冲产生电路得到四路PWM控制信号,但是有一点必须注意,那就是UCC3895的驱动能力很弱,所以必须将这些控制信号加以功率放大并隔离,然后才能驱动主电路的两个桥臂中的开关管。其中,采用母线电流的好处是它能反映同一桥臂上下开关管的贯通情况,从而为开关管的保护电路提供一定的依据。另外,该方案成功与否的关键就是斜坡补偿电路以及隔离驱动电路    4、实用电路分析   图4-1所示为实际采用的主电路图,其中滤波和EMI部分主要简单考虑了串模和共模干扰的处理。整流桥最大流过电流10A,并加一保险丝防止大的事故出现。R1和R2组成直流母线电压检测分压器,得到的电压信号经过控制和逻辑电路后,一路直接给母线软起动电路的固体继电器SSR,另外一路给控制芯片的软起动控制电路SS(Soft Start)部分来控制UCC3895的软起动,并且这两路软起动之间的延迟时间是可通过电路参数调节的。C5和C6都是电解电容,其值2200uF。CS是母线电流互感器,通过检测母线电流信号,再与芯片内部振荡器输出的Ct端电压信号通过一定比例的叠加,可以得到斜坡补偿的电流信号;同时该电流检测电路还能起到逐个脉冲(Pulse by Pulse)的过流保护功能,并可以防止同一桥臂上下管同时导通。Ch是高频无感电容,大小为0.033uF, 由于电路的工作频率较高,所以在电路的设计中将它尽可能的靠近电流互感器和地连接。Q1-Q4 为主开关管,图中其并联二极管是其内部等效表示,电容可以是外接电容。Ls是谐振电感,其值10uH,Tr是主变压器,变比为1:1, DS1,DS2, Lf1, Lf2组成倍流整流器的副边。C7, C8是电解电容,它们的大小皆为2200uF, C9为高频无感电容大小为1uF 。   250V直流电压输入时(其中负载电阻为10.7Ω,电路工作频率均为100KHz。):软开捅时开关管G、E两端电压(波形1)和C、E两端电压(波形2)波形   由以上两图(a)和(b)可以看出:在开关管C、E两端电压降为零(反并联二极管在此之前导通)之后100-200ns栅极驱动电压才上升到栅平台值(6V左右),此时开关管才开始导通,所以它们是零电压开通的。同时注意:超前桥臂和滞后桥臂的软开通有一定差别,具体说来就是超前臂比较容易实现软开通一些,所以在相同条件下它的软开通效果较为明显。    5、结语   该电路设计方案是切实可行的,它结合了电流模式控制、移相PWM控制、倍流整流器电路、最新驱动芯片以及专门设计的开关器件的一些优点:   (1). 从实验波形来看,变换器的超前与滞后桥臂开关器件均能很好的实现零电压软开关,并且零电压软开关的实现条件以及两个桥臂软开关的差异也比基本型电路小。除此之外,采用倍流整流器电路后,变换器的设计也更加简单化:比如主变压器的副边只需要单一绕组,而不是像全波整流那样需要引入中心抽头;而且副边电感量的大幅减小也使得电感的设计更加方便。   (2). 采用电流模式控制能带来一系列的好处。比如在防止变压器磁芯饱和方面、能够很简单的提供逐脉冲限流控制以及保证倍流整流器副边电感电流的平衡方面,它都有着电压模式控制无法比拟的优点。   (3). 高速大电流驱动芯片使得驱动电路的设计更加简单可靠。
  • 热度 20
    2012-9-17 16:56
    2123 次阅读|
    3 个评论
    作者:飞兆半导体公司 Sungmo Young 引言 功率转换开关频率一直在不断提高,以便最大限度地提升功率密度,软开关技术如零电压开关(zero voltage switching,ZVS)成为通用的技术以进一步提高开关频率。随着开关频率的增大 ,功率MOSFET的寄生特性不再可忽略不计。对于采用ZVS拓扑的功率转换器设计,输出电容是所有寄生成分中至关重要的寄生参数。它决定了需要多少电感 量来提供ZVS的工作条件。传统上,许多设计人员使用粗略的假设来为公式 提供输出电容的固定值。然而常用的等效输出电容值在实际应用中却没有很 大的帮助,因为它是根据漏-源电压变化的,并且在开关管导通/关断转变期间不能提供准确的储能信息。在功率转换器工作电压下,根据输出电容存储能量新定义 的等效输出电容,能够实现更优化的功率转换器设计。 ZVS转换器中的输出电容 在软开关拓扑中,通过使用电感中的储能来达到零电压导通,漏电感和串联电感或变压器中的磁化电感,通过谐振方式使开关管中的输出电容放电。因此,电感必须精确设计,以防止硬开关引起额外的功率损耗。下面的公式是零电压开关的基本要求。           (1) 其中,C eq 是开关等效输出电容,C TR 是变压器寄生电容           (2) 其中,C S 是开关等效输出电容 公式(1)用于移相全桥拓扑 ,公式(2)用于LLC谐振半桥拓扑 。在两个公式中输出电容都起着重要作用。如果在公式(1)中假设输出电容过 大,公式会给出较大的电感。然后,此大电感将降低初级di/dt,并且减低功率转换器的有效占空比。相反,太小的输出电容将导致较小的电感和有害的硬开 关。另外,公式(2)中太大的输出电容将限制磁化电感并引起循环电流的增加。因此,对于优化软开关转换器设计,获取准确的开关输出电容值是非常关键的。通 常,针对等效输出电容的常见假设倾向于使用较大的数值。所以,根据公式(1)或(2)选择电感后,设计人员必须调整其功率转换器参数,并且要经过数次反复 设计,因为每个参数都是相互关联的,例如,匝数比、漏电感、以及有效占空比。而且,功率MOSFET的输出电容是根据漏-源电压变化的。在功率转换器工作 电压下,根据储能来等效出的输出电容值是这些应用的最佳替代选择。 从输出电容中获得储能 在电压-电荷关系图上,电容呈斜直线,电容中的储能为该直线下包含的区域。虽然功率MOSFET的输出电容却是非线性的,并且依据漏源电压的变化而变化, 但是,输出电容中的储能仍为非线性电容线下所包含的区域。因此,如果我们能够找出一条直线,由该直线给出的区域与图1中显示的变化的输出电容曲线所包含的 区域相同,则直线的斜率恰好是产生相同的储能的等效输出电容。   图1. 等效输出电容的概念 对于某些老式平面技术MOSFET,设计人员可能会用曲线拟合来找出等效输出电容,其基于通常指定的25V漏源电压下的数据表中的输出电容值。          (3) 于是,储能可由简单积分公式获得。          (4) 最后,有效输出电容即为            (5) 图2显示了输出电容的测量值以及由公式(3)得出的拟合曲线。相对于图2(a)的老式技术MOSFET,它的效果不错。然而,对于使用新技术如超级结技 术,输出电容有更多非线性特性的MOSFET,则简单的指数曲线拟合有时不够好。图2(b)显示了最新技术MOSFET的输出电容测量值以及用公式(3) 得出的拟合曲线。对于等效输出电容值,两者之间在高电压区的间隙会导致巨大的差异,因为在积分公式中电压对于电容是相乘的。图2(b)中的估计将产生大得 多的等效电容,这会误导转换器的初始设计。   图2. 输出电容估值,(a)老式MOSFET,(b)新MOSFET 如果输出电容值依据漏源电压而变化,输出电容中的储能可以使用公式(4)来求得。虽然电容曲线显示在数据表中,但从图表中精确地读出电容值并不容易。因 此,依据漏源电压,输出电容中的储能由最新功率MOSFET数据表中的图表给出。通过图3显示的曲线,使用公式(5),可以得到在期望的直流(DC)总线 电压下的等效输出电容。   图3. 输出电容中的储能 关于输出电容的常见问题 在许多情况下,开关电源设计人员会有关于MOSFET电容温度系数的疑问,因为功率MOSFET通常工作在高温下。总之,MOSFET电容值对于温度可以 被认为是恒定的。MOSFET电容由耗竭长度(depletion length)、掺杂浓度、沟道宽度和硅介电常数所决定,但所有这些因素不会由温度而产生较大的变化。而且MOSFET开关特性如开关损耗或开/关转换速 度也不会因温度而产生较大的变化,因为MOSFET是多数载流子器件,因而开关特性主要是由其电容来决定。当温度上升时,等效串联栅极电阻会有少量增加。 这会使MOSFET在高温下的开关速度少许降低。图4显示了依据温度变化的电容。温度变化超过150度时,电容值的变化也不超过1%。   图4. MOSFET电容对比温度的变化 另一个设计人员感兴趣的地方是MOSFET电容的测试条件。大多数情况下,输出电容在1MHz频率和V gs 为0V的条件下测得。事实上存在着栅极对漏极电容、栅极对源极电容,以及漏极对源极电容。实践中,单独测量每一种电容是不可能的。因此,栅极对漏极电容和漏极对源极电容总称为输出电容,通过并联两个电容来测量。为使它们并联,栅极和源极短接在一起,即V gs =0V。 在开关应用中,当MOSFET在栅极加偏置电压而导通时,输出电容通过MOSFET内部沟道而短路。仅当MOSFET关断时,输出电容值才值得考虑。关于 频率,如图5所示,在低压下输出电容在低频下增加少许。低频时,因为测试设备的限制,有时无法测量低漏源电压下的电容。图5中,当漏源电压小于4V 时,100kHz处的电容是无法测得的。虽然输出电容仅有微小改变,但等效输出电容几乎是恒定的,因为低电压下输出电容的微小改变不会对储能产生如图3显 示那么大影响。   图5. MOSFET电容对比频率 结论 输出电容是软开关转换器设计的重要部分。必须慎重考虑等效电容值,而不是固定漏源电压下的单一数值,本文也提供了有关输出电容测试条件和温度系数的讨论。
  • 热度 18
    2012-7-4 13:50
    2974 次阅读|
    0 个评论
    零电压开关电源(ZVS)是当前开关电源技术中比较先进,也比较成熟的技术,因为处于软开关状态,可以做到更高的频率及更高的效率,并且系统的可靠性更高跟稳定。   基于ZVS技术的芯片目前也比较多,比较典型的有UC3875及UCC3879,刘胜利的“现代高频开关电源实用技术”对ZVS的12个工作状态描述的比较详细,但因为描述的过于详细,反而不好简单理解,容易被书上牵着走,尤其是刘胜利书上涉及输出二极管的续流特性,分成了12个状态,若不考虑这个,一般只有10个状态。2年前接触之后,表面上看懂了,但实际上还没有真正理解,这次再一次仔细分析,把10个过程简单的描述出来。   ZVS的核心是利用回路中的电感来实现对开关管输出电容的能量吸收,所以可以理解为电路工作频率略高于回路的谐振频率。    上图是一个标准的ZVS输出级电路,Ls是附加的电感,保证输出回路的电感量足够大,因为ZVS电路是靠电感来实现整个运转的,T为输出变压器,Q1~Q4为四桥臂功率管,可以是MOS管,也可以是IGBT管,一般不采用晶体管。D1~D4是功率管的反向续流二极管,C1~C4是功率管的输出两端的等效电容及附加电容。   加在Q1~Q4栅极上的电压波形如图:   本人把这个过程用一张图来描述电流变化: 通过这张表,就一目了然了,理解的更加深刻。运转的核心是依靠电感   分析不足之处,请指教。
相关资源
  • 所需E币: 1
    时间: 2024-4-23 19:48
    大小: 542.34KB
    上传者: 张红川
    ZVSZCS谐振全桥的仿真建模和闭环稳定性分析.docx
  • 所需E币: 0
    时间: 2022-8-2 15:56
    大小: 220.61KB
    上传者: samewell
    ZVSClassDSeriesResonant.pdf
  • 所需E币: 0
    时间: 2020-12-18 23:49
    大小: 49.7KB
    上传者: samewell
    详解介绍zvs原理及如何自制zvs的升压电路图以及它的操作步骤
  • 所需E币: 0
    时间: 2020-12-21 20:41
    大小: 1.79MB
    上传者: czd886
    3KM全桥移相ZVS软开关电源的设计
  • 所需E币: 0
    时间: 2020-12-13 18:55
    大小: 60.61KB
    上传者: xiaosh728
    详解介绍zvs原理及如何自制zvs的升压电路图以及它的操作步骤
  • 所需E币: 2
    时间: 2020-6-23 20:06
    大小: 626.81KB
    上传者: Goodluck2020
    Vicor_高性能ZVS降压稳压器消除.PDF
  • 所需E币: 3
    时间: 2019-12-26 12:54
    大小: 1.14MB
    上传者: 二不过三
    全波整流ZVS……
  • 所需E币: 3
    时间: 2019-12-27 20:13
    大小: 1.57MB
    上传者: rdg1993
    8Vto36VinCool-PowerZVSBuckRegulatorfamilyPPI33XX……
  • 所需E币: 5
    时间: 2019-12-28 22:06
    大小: 229.11KB
    上传者: 16245458_qq.com
    软开关双管正激电源设计方案……
  • 所需E币: 5
    时间: 2020-1-4 23:54
    大小: 26.61KB
    上传者: 2iot
    广义软开关变换器的技术原理和应用……
  • 所需E币: 5
    时间: 2019-12-24 22:41
    大小: 443.48KB
    上传者: 2iot
    本设计指南提供了提升ZVS全桥拓扑的零电压范围方法。这些方法对硬件电路进行最小的改动,同时在不仅在零电压开关上,还在其他方面,例如降低共模电流、限制输出二极管的电压等方面,都显著提高电路的性能。设计指南还给出了一些有用的应用电路例子。提升ZVS全桥性能的技术应用笔记2006年4月4日AN1246.0前言ZVS(零电压开关)全桥拓扑已经出现多年,并且已成为业界主流。虽然这种拓扑具有很多优点,但是也给设计人员带来一些有意思的挑战。这种拓扑的主要缺点之一就是需要一个复杂的栅极驱动来生成正确的开关波形信号。使用Intersil公司的ISL6752和ISL6753等器件,就可以克服上述缺点。另一个挑战就是可以实现零电压开关的有限负载范围。精良的设计能够低至最大负载的50%实现ZVS。但是,有一些技术能够有助于提升ZVS拓扑的工作范围,使之能够低至最大负载电流的10%。本文将讨论这些技术。适用范围本设计指南提供了提升ZVS全桥拓扑的零电压范围方法。这些方法对硬件电路进行最小的改动,同时在不仅在零电压开关上,还在其他方面,例如降低共模电流、限制输出二极管的电压等方面,都显著提高电路的性能。设计指南还给出了一些有用的应用电路例子。能量和谐振零电压开关的关键在于,存贮于变压器电感中的能量以及电路中的电容充放电所需的能量的对比关系。增大电感存贮的能量,或者减小电容都会使得变换器设计能够在较低的输出电流下进行零电压开关。存贮的能量E可通过公式表示为:1E=LRESI2(EQ.1)2这里,LRES为变压器的等效谐振电感,I为流过等效电感的电流大小。根据所采用的技术不同,这个电感最小……
  • 所需E币: 3
    时间: 2019-6-11 22:56
    大小: 954.3KB
    上传者: royalark_912907664
    为了减轻无线充电过程中对电网造成的谐波污染,本文结合不对称半桥变换器和反激变换器的优点,设计了无线充电系统不对称半桥反激式PFC电路,分析了此新型PFC电路的工作原理以及实现软开关的条件,并进行了仿真验证。实验数据表明:不对称半桥反激式PFC可实现开关管的ZVS运行,该电路使开关损耗明显降低,降低了EMI,提高了无线充电设备的功率因数,降低了对电网的谐波污染。